Publikation:

SARDE : A Framework for Continuous and Self-Adaptive Resource Demand Estimation

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Autor:innen

Grohmann, Johannes
Eismann, Simon
Bauer, André
Spinner, Simon
Herbst, Nikolas
Kounev, Samuel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACM Transactions on Autonomous and Adaptive Systems. Association for Computing Machinery (ACM). 2021, 15(2), 6. ISSN 1556-4665. eISSN 1556-4703. Available under: doi: 10.1145/3463369

Zusammenfassung

Resource demands are crucial parameters for modeling and predicting the performance of software systems. Currently, resource demand estimators are usually executed once for system analysis. However, the monitored system, as well as the resource demand itself, are subject to constant change in runtime environments. These changes additionally impact the applicability, the required parametrization as well as the resulting accuracy of individual estimation approaches. Over time, this leads to invalid or outdated estimates, which in turn negatively influence the decision-making of adaptive systems. In this article, we present SARDE, a framework for self-adaptive resource demand estimation in continuous environments. SARDE dynamically and continuously tunes, selects, and executes an ensemble of resource demand estimation approaches to adapt to changes in the environment. This creates an autonomous and unsupervised ensemble estimation technique, providing reliable resource demand estimations in dynamic environments. We evaluate SARDE using two realistic datasets. One set of different micro-benchmarks reflecting different possible system states and one dataset consisting of a continuously running application in a changing environment. Our results show that by continuously applying online optimization, selection and estimation, SARDE is able to efficiently adapt to the online trace and reduce the model error using the resulting ensemble technique.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GROHMANN, Johannes, Simon EISMANN, André BAUER, Simon SPINNER, Johannes BLUM, Nikolas HERBST, Samuel KOUNEV, 2021. SARDE : A Framework for Continuous and Self-Adaptive Resource Demand Estimation. In: ACM Transactions on Autonomous and Adaptive Systems. Association for Computing Machinery (ACM). 2021, 15(2), 6. ISSN 1556-4665. eISSN 1556-4703. Available under: doi: 10.1145/3463369
BibTex
@article{Grohmann2021SARDE-54319,
  year={2021},
  doi={10.1145/3463369},
  title={SARDE : A Framework for Continuous and Self-Adaptive Resource Demand Estimation},
  number={2},
  volume={15},
  issn={1556-4665},
  journal={ACM Transactions on Autonomous and Adaptive Systems},
  author={Grohmann, Johannes and Eismann, Simon and Bauer, André and Spinner, Simon and Blum, Johannes and Herbst, Nikolas and Kounev, Samuel},
  note={Article Number: 6}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54319">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Spinner, Simon</dc:creator>
    <dc:creator>Kounev, Samuel</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Spinner, Simon</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-15T11:56:19Z</dcterms:available>
    <dcterms:issued>2021</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54319"/>
    <dcterms:abstract xml:lang="eng">Resource demands are crucial parameters for modeling and predicting the performance of software systems. Currently, resource demand estimators are usually executed once for system analysis. However, the monitored system, as well as the resource demand itself, are subject to constant change in runtime environments. These changes additionally impact the applicability, the required parametrization as well as the resulting accuracy of individual estimation approaches. Over time, this leads to invalid or outdated estimates, which in turn negatively influence the decision-making of adaptive systems. In this article, we present SARDE, a framework for self-adaptive resource demand estimation in continuous environments. SARDE dynamically and continuously tunes, selects, and executes an ensemble of resource demand estimation approaches to adapt to changes in the environment. This creates an autonomous and unsupervised ensemble estimation technique, providing reliable resource demand estimations in dynamic environments. We evaluate SARDE using two realistic datasets. One set of different micro-benchmarks reflecting different possible system states and one dataset consisting of a continuously running application in a changing environment. Our results show that by continuously applying online optimization, selection and estimation, SARDE is able to efficiently adapt to the online trace and reduce the model error using the resulting ensemble technique.</dcterms:abstract>
    <dc:contributor>Kounev, Samuel</dc:contributor>
    <dc:contributor>Bauer, André</dc:contributor>
    <dc:creator>Grohmann, Johannes</dc:creator>
    <dc:creator>Bauer, André</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-15T11:56:19Z</dc:date>
    <dc:creator>Eismann, Simon</dc:creator>
    <dc:contributor>Blum, Johannes</dc:contributor>
    <dc:creator>Herbst, Nikolas</dc:creator>
    <dc:contributor>Grohmann, Johannes</dc:contributor>
    <dcterms:title>SARDE : A Framework for Continuous and Self-Adaptive Resource Demand Estimation</dcterms:title>
    <dc:contributor>Eismann, Simon</dc:contributor>
    <dc:contributor>Herbst, Nikolas</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Blum, Johannes</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen