Publikation: SARDE : A Framework for Continuous and Self-Adaptive Resource Demand Estimation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Resource demands are crucial parameters for modeling and predicting the performance of software systems. Currently, resource demand estimators are usually executed once for system analysis. However, the monitored system, as well as the resource demand itself, are subject to constant change in runtime environments. These changes additionally impact the applicability, the required parametrization as well as the resulting accuracy of individual estimation approaches. Over time, this leads to invalid or outdated estimates, which in turn negatively influence the decision-making of adaptive systems. In this article, we present SARDE, a framework for self-adaptive resource demand estimation in continuous environments. SARDE dynamically and continuously tunes, selects, and executes an ensemble of resource demand estimation approaches to adapt to changes in the environment. This creates an autonomous and unsupervised ensemble estimation technique, providing reliable resource demand estimations in dynamic environments. We evaluate SARDE using two realistic datasets. One set of different micro-benchmarks reflecting different possible system states and one dataset consisting of a continuously running application in a changing environment. Our results show that by continuously applying online optimization, selection and estimation, SARDE is able to efficiently adapt to the online trace and reduce the model error using the resulting ensemble technique.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GROHMANN, Johannes, Simon EISMANN, André BAUER, Simon SPINNER, Johannes BLUM, Nikolas HERBST, Samuel KOUNEV, 2021. SARDE : A Framework for Continuous and Self-Adaptive Resource Demand Estimation. In: ACM Transactions on Autonomous and Adaptive Systems. Association for Computing Machinery (ACM). 2021, 15(2), 6. ISSN 1556-4665. eISSN 1556-4703. Available under: doi: 10.1145/3463369BibTex
@article{Grohmann2021SARDE-54319, year={2021}, doi={10.1145/3463369}, title={SARDE : A Framework for Continuous and Self-Adaptive Resource Demand Estimation}, number={2}, volume={15}, issn={1556-4665}, journal={ACM Transactions on Autonomous and Adaptive Systems}, author={Grohmann, Johannes and Eismann, Simon and Bauer, André and Spinner, Simon and Blum, Johannes and Herbst, Nikolas and Kounev, Samuel}, note={Article Number: 6} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54319"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Spinner, Simon</dc:creator> <dc:creator>Kounev, Samuel</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Spinner, Simon</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-15T11:56:19Z</dcterms:available> <dcterms:issued>2021</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54319"/> <dcterms:abstract xml:lang="eng">Resource demands are crucial parameters for modeling and predicting the performance of software systems. Currently, resource demand estimators are usually executed once for system analysis. However, the monitored system, as well as the resource demand itself, are subject to constant change in runtime environments. These changes additionally impact the applicability, the required parametrization as well as the resulting accuracy of individual estimation approaches. Over time, this leads to invalid or outdated estimates, which in turn negatively influence the decision-making of adaptive systems. In this article, we present SARDE, a framework for self-adaptive resource demand estimation in continuous environments. SARDE dynamically and continuously tunes, selects, and executes an ensemble of resource demand estimation approaches to adapt to changes in the environment. This creates an autonomous and unsupervised ensemble estimation technique, providing reliable resource demand estimations in dynamic environments. We evaluate SARDE using two realistic datasets. One set of different micro-benchmarks reflecting different possible system states and one dataset consisting of a continuously running application in a changing environment. Our results show that by continuously applying online optimization, selection and estimation, SARDE is able to efficiently adapt to the online trace and reduce the model error using the resulting ensemble technique.</dcterms:abstract> <dc:contributor>Kounev, Samuel</dc:contributor> <dc:contributor>Bauer, André</dc:contributor> <dc:creator>Grohmann, Johannes</dc:creator> <dc:creator>Bauer, André</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-15T11:56:19Z</dc:date> <dc:creator>Eismann, Simon</dc:creator> <dc:contributor>Blum, Johannes</dc:contributor> <dc:creator>Herbst, Nikolas</dc:creator> <dc:contributor>Grohmann, Johannes</dc:contributor> <dcterms:title>SARDE : A Framework for Continuous and Self-Adaptive Resource Demand Estimation</dcterms:title> <dc:contributor>Eismann, Simon</dc:contributor> <dc:contributor>Herbst, Nikolas</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Blum, Johannes</dc:creator> </rdf:Description> </rdf:RDF>