Publikation:

A Note on Schanuel's Conjectures for Exponential Logarithmic Power Series Fields

Lade...
Vorschaubild

Dateien

kuhlmann_212627.pdf
kuhlmann_212627.pdfGröße: 130.09 KBDownloads: 220

Datum

2012

Autor:innen

Matusinski, Mickael,
Shkop, Ahuva C.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We consider a valued field of characteristic 0 with embedded residue field. We fix an additive complement to the valuation ring and its induced "constant term" map. We further assume that the valued field is endowed with an exponential map, and a derivation compatible with the exponential. We use a result of Ax to evaluate the transcendence degree of subfields generated by field elements which have constant term equal to 0 and are linearly independent. We apply our result to the examples of Logarithmic-Exponential power series fields, Exponential-Logarithmic power series fields, and Exponential Hardy fields.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KUHLMANN, Salma, Mickael MATUSINSKI, Ahuva C. SHKOP, 2012. A Note on Schanuel's Conjectures for Exponential Logarithmic Power Series Fields
BibTex
@unpublished{Kuhlmann2012Schan-21262,
  year={2012},
  title={A Note on Schanuel's Conjectures for Exponential Logarithmic Power Series Fields},
  author={Kuhlmann, Salma and Matusinski, Mickael, and Shkop, Ahuva C.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21262">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21262"/>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Shkop, Ahuva C.</dc:contributor>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Matusinski, Mickael,</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>A Note on Schanuel's Conjectures for Exponential Logarithmic Power Series Fields</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-31T09:04:56Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:creator>Shkop, Ahuva C.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21262/1/kuhlmann_212627.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21262/1/kuhlmann_212627.pdf"/>
    <dcterms:abstract xml:lang="eng">We consider a valued field of characteristic 0 with embedded residue field. We fix an additive complement to the valuation ring and its induced "constant term" map. We further assume that the valued field is endowed with an exponential map, and a derivation compatible with the exponential. We use a result of Ax to evaluate the transcendence degree of subfields generated by field elements which have constant term equal to 0 and are linearly independent. We apply our result to the examples of Logarithmic-Exponential power series fields, Exponential-Logarithmic power series fields, and Exponential Hardy fields.</dcterms:abstract>
    <dc:creator>Matusinski, Mickael,</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-31T09:04:56Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen