Publikation: pamlr : A toolbox for analysing animal behaviour using pressure, acceleration, temperature, magnetic or light data in R
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Light-level geolocators have revolutionised the study of animal behaviour. However, lacking spatial precision, their usage has been primary targeted towards the analysis of large-scale movements. Recent technological developments have allowed the integration of magnetometers and accelerometers into geolocator tags in addition to barometers and thermometers, offering new behavioural insights. Here, we introduce an R toolbox for identifying behavioural patterns from multisensor geolocator tags, with functions specifically designed for data visualisation, calibration, classification and error estimation. More specifically, the package allows for the flexible analysis of any combination of sensor data using k-means clustering, expectation maximisation binary clustering, hidden Markov models and changepoint analyses. Furthermore, the package integrates tailored algorithms for identifying periods of prolonged high activity (most commonly used for identifying migratory flapping flight), and pressure changes (most commonly used for identifying dive or flight events). Finally, we highlight some of the limitations, implications and opportunities of using these methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DHANJAL-ADAMS, Kiran L., Astrid S. T. WILLENER, Felix LIECHTI, 2022. pamlr : A toolbox for analysing animal behaviour using pressure, acceleration, temperature, magnetic or light data in R. In: Journal of Animal Ecology. Wiley-Blackwell - STM. 2022, 91(7), pp. 1345-1360. ISSN 0021-8790. eISSN 1365-2656. Available under: doi: 10.1111/1365-2656.13695BibTex
@article{DhanjalAdams2022-07pamlr-57475, year={2022}, doi={10.1111/1365-2656.13695}, title={pamlr : A toolbox for analysing animal behaviour using pressure, acceleration, temperature, magnetic or light data in R}, number={7}, volume={91}, issn={0021-8790}, journal={Journal of Animal Ecology}, pages={1345--1360}, author={Dhanjal-Adams, Kiran L. and Willener, Astrid S. T. and Liechti, Felix} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57475"> <dcterms:issued>2022-07</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57475"/> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/> <dc:contributor>Dhanjal-Adams, Kiran L.</dc:contributor> <dc:creator>Dhanjal-Adams, Kiran L.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57475/1/Dhanjal-Adams_2-mo1vnvcfepny8.pdf"/> <dcterms:title>pamlr : A toolbox for analysing animal behaviour using pressure, acceleration, temperature, magnetic or light data in R</dcterms:title> <dcterms:abstract xml:lang="eng">Light-level geolocators have revolutionised the study of animal behaviour. However, lacking spatial precision, their usage has been primary targeted towards the analysis of large-scale movements. Recent technological developments have allowed the integration of magnetometers and accelerometers into geolocator tags in addition to barometers and thermometers, offering new behavioural insights. Here, we introduce an R toolbox for identifying behavioural patterns from multisensor geolocator tags, with functions specifically designed for data visualisation, calibration, classification and error estimation. More specifically, the package allows for the flexible analysis of any combination of sensor data using k-means clustering, expectation maximisation binary clustering, hidden Markov models and changepoint analyses. Furthermore, the package integrates tailored algorithms for identifying periods of prolonged high activity (most commonly used for identifying migratory flapping flight), and pressure changes (most commonly used for identifying dive or flight events). Finally, we highlight some of the limitations, implications and opportunities of using these methods.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Willener, Astrid S. T.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-09T11:00:56Z</dc:date> <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Liechti, Felix</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-09T11:00:56Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57475/1/Dhanjal-Adams_2-mo1vnvcfepny8.pdf"/> <dc:creator>Willener, Astrid S. T.</dc:creator> <dc:creator>Liechti, Felix</dc:creator> </rdf:Description> </rdf:RDF>