Publikation: Simultaneously Modelling Conditional Heteroskedasticity and Scale Change
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper proposes a semiparametric approach by introducing a smooth scale function into the standard GARCH model so that conditional heteroskedasticity and scale change in a financial time series can be modelled simultaneously. An estimation procedure combining kernel estimation of the scale function and maximum likelihood estimation of the GARCH parameters is proposed. Asymptotic properties of the kernel estimator are investigated in detail. An iterative plug-in algorithm is developed for selecting the bandwidth. Practical performance of the proposal is illustrated by simulation. The proposal is applied to the daily S&P 500 and DAX 100 returns. It is shown that there are simultaneously significant conditional heteroskedasticity and scale change in these series.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FENG, Yuanhua, 2002. Simultaneously Modelling Conditional Heteroskedasticity and Scale ChangeBibTex
@techreport{Feng2002Simul-12068, year={2002}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Simultaneously Modelling Conditional Heteroskedasticity and Scale Change}, number={2002/12}, author={Feng, Yuanhua} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12068"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:28Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12068/1/02-12.pdf"/> <dc:contributor>Feng, Yuanhua</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:format>application/pdf</dc:format> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:28Z</dc:date> <dcterms:abstract xml:lang="eng">This paper proposes a semiparametric approach by introducing a smooth scale function into the standard GARCH model so that conditional heteroskedasticity and scale change in a financial time series can be modelled simultaneously. An estimation procedure combining kernel estimation of the scale function and maximum likelihood estimation of the GARCH parameters is proposed. Asymptotic properties of the kernel estimator are investigated in detail. An iterative plug-in algorithm is developed for selecting the bandwidth. Practical performance of the proposal is illustrated by simulation. The proposal is applied to the daily S&P 500 and DAX 100 returns. It is shown that there are simultaneously significant conditional heteroskedasticity and scale change in these series.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12068"/> <dcterms:title>Simultaneously Modelling Conditional Heteroskedasticity and Scale Change</dcterms:title> <dc:creator>Feng, Yuanhua</dc:creator> <dcterms:issued>2002</dcterms:issued> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12068/1/02-12.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> </rdf:Description> </rdf:RDF>