Publikation:

Global models and predictions of plant diversity based on advanced machine learning techniques

Lade...
Vorschaubild

Dateien

Cai_2-mms2r4cvgzoy4.pdf
Cai_2-mms2r4cvgzoy4.pdfGröße: 1.89 MBDownloads: 170

Datum

2023

Autor:innen

Cai, Lirong
Kreft, Holger
Taylor, Amanda
Denelle, Pierre
Schrader, Julian
Essl, Franz
Pergl, Jan
Weigelt, Patrick
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The New Phytologist. Wiley. 2023, 237(4), pp. 1432-1445. ISSN 0028-646X. eISSN 1469-8137. Available under: doi: 10.1111/nph.18533

Zusammenfassung

Despite the paramount role of plant diversity for ecosystem functioning, biogeochemical cycles, and human welfare, knowledge of its global distribution is still incomplete, hampering basic research and biodiversity conservation.

Here, we used machine learning (random forests, extreme gradient boosting, and neural networks) and conventional statistical methods (generalized linear models and generalized additive models) to test environment-related hypotheses of broad-scale vascular plant diversity gradients and to model and predict species richness and phylogenetic richness worldwide. To this end, we used 830 regional plant inventories including c. 300 000 species and predictors of past and present environmental conditions.

Machine learning showed a superior performance, explaining up to 80.9% of species richness and 83.3% of phylogenetic richness, illustrating the great potential of such techniques for disentangling complex and interacting associations between the environment and plant diversity. Current climate and environmental heterogeneity emerged as the primary drivers, while past environmental conditions left only small but detectable imprints on plant diversity.

Finally, we combined predictions from multiple modeling techniques (ensemble predictions) to reveal global patterns and centers of plant diversity at multiple resolutions down to 7774 km2 . Our predictive maps provide accurate estimates of global plant diversity available at grain sizes relevant for conservation and macroecology.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

biodiversity; diversity-environment models; phylogenetic diversity; species richness; vascular plants

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CAI, Lirong, Holger KREFT, Amanda TAYLOR, Pierre DENELLE, Julian SCHRADER, Franz ESSL, Mark VAN KLEUNEN, Jan PERGL, Anke STEIN, Patrick WEIGELT, 2023. Global models and predictions of plant diversity based on advanced machine learning techniques. In: The New Phytologist. Wiley. 2023, 237(4), pp. 1432-1445. ISSN 0028-646X. eISSN 1469-8137. Available under: doi: 10.1111/nph.18533
BibTex
@article{Cai2023Globa-59170,
  year={2023},
  doi={10.1111/nph.18533},
  title={Global models and predictions of plant diversity based on advanced machine learning techniques},
  number={4},
  volume={237},
  issn={0028-646X},
  journal={The New Phytologist},
  pages={1432--1445},
  author={Cai, Lirong and Kreft, Holger and Taylor, Amanda and Denelle, Pierre and Schrader, Julian and Essl, Franz and van Kleunen, Mark and Pergl, Jan and Stein, Anke and Weigelt, Patrick}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59170">
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Pergl, Jan</dc:creator>
    <dc:creator>Denelle, Pierre</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Essl, Franz</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>van Kleunen, Mark</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Pergl, Jan</dc:contributor>
    <dcterms:abstract xml:lang="eng">Despite the paramount role of plant diversity for ecosystem functioning, biogeochemical cycles, and human welfare, knowledge of its global distribution is still incomplete, hampering basic research and biodiversity conservation.&lt;br /&gt;&lt;br /&gt;Here, we used machine learning (random forests, extreme gradient boosting, and neural networks) and conventional statistical methods (generalized linear models and generalized additive models) to test environment-related hypotheses of broad-scale vascular plant diversity gradients and to model and predict species richness and phylogenetic richness worldwide. To this end, we used 830 regional plant inventories including c. 300 000 species and predictors of past and present environmental conditions.&lt;br /&gt;&lt;br /&gt;Machine learning showed a superior performance, explaining up to 80.9% of species richness and 83.3% of phylogenetic richness, illustrating the great potential of such techniques for disentangling complex and interacting associations between the environment and plant diversity. Current climate and environmental heterogeneity emerged as the primary drivers, while past environmental conditions left only small but detectable imprints on plant diversity.&lt;br /&gt;&lt;br /&gt;Finally, we combined predictions from multiple modeling techniques (ensemble predictions) to reveal global patterns and centers of plant diversity at multiple resolutions down to 7774 km2 . Our predictive maps provide accurate estimates of global plant diversity available at grain sizes relevant for conservation and macroecology.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Cai, Lirong</dc:creator>
    <dc:contributor>Weigelt, Patrick</dc:contributor>
    <dc:contributor>Denelle, Pierre</dc:contributor>
    <dc:contributor>Cai, Lirong</dc:contributor>
    <dc:contributor>Taylor, Amanda</dc:contributor>
    <dc:creator>Schrader, Julian</dc:creator>
    <dc:creator>Taylor, Amanda</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-16T11:40:46Z</dc:date>
    <dc:creator>Stein, Anke</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59170/1/Cai_2-mms2r4cvgzoy4.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59170/1/Cai_2-mms2r4cvgzoy4.pdf"/>
    <dc:creator>Weigelt, Patrick</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-16T11:40:46Z</dcterms:available>
    <dc:contributor>van Kleunen, Mark</dc:contributor>
    <dc:contributor>Kreft, Holger</dc:contributor>
    <dc:contributor>Schrader, Julian</dc:contributor>
    <dc:contributor>Essl, Franz</dc:contributor>
    <dc:creator>Kreft, Holger</dc:creator>
    <dcterms:title>Global models and predictions of plant diversity based on advanced machine learning techniques</dcterms:title>
    <dc:contributor>Stein, Anke</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59170"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
Predictions of vascular plant species and phylogenetic richness and model uncertainties based on the various statistical models applied here
Predictions and uncertainties as well as the data and R codes needed to run the analyses
Diese Publikation teilen