Publikation: On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a new approach to study tensors with symmetry, via local algebraic geometry. Border rank decompositions for such tensors---in particular, matrix multiplication and the determinant polynomial---come in families. We prove that these families include representatives with normal forms. These normal forms will be useful to prove lower complexity bounds and possibly even to determine new decompositions. We derive a border rank version of the substitution method used in proving lower bounds for tensor rank. Applying these methods, we improve the lower bound on the border rank of matrix multiplication. We also point out difficulties that will be formidable obstacles to future progress on lower complexity bounds for tensors because of the “wild” structure of the Hilbert scheme of points.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LANDSBERG, Joseph M., Mateusz MICHALEK, 2017. On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry. In: SIAM Journal on Applied Algebra and Geometry. Society for Industrial and Applied Mathematics (SIAM). 2017, 1(1), pp. 2-19. eISSN 2470-6566. Available under: doi: 10.1137/16M1067457BibTex
@article{Landsberg2017Geome-52210, year={2017}, doi={10.1137/16M1067457}, title={On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry}, number={1}, volume={1}, journal={SIAM Journal on Applied Algebra and Geometry}, pages={2--19}, author={Landsberg, Joseph M. and Michalek, Mateusz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52210"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T13:40:28Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Landsberg, Joseph M.</dc:creator> <dcterms:issued>2017</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T13:40:28Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52210"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <dc:creator>Michalek, Mateusz</dc:creator> <dc:contributor>Landsberg, Joseph M.</dc:contributor> <dcterms:title>On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We present a new approach to study tensors with symmetry, via local algebraic geometry. Border rank decompositions for such tensors---in particular, matrix multiplication and the determinant polynomial---come in families. We prove that these families include representatives with normal forms. These normal forms will be useful to prove lower complexity bounds and possibly even to determine new decompositions. We derive a border rank version of the substitution method used in proving lower bounds for tensor rank. Applying these methods, we improve the lower bound on the border rank of matrix multiplication. We also point out difficulties that will be formidable obstacles to future progress on lower complexity bounds for tensors because of the “wild” structure of the Hilbert scheme of points.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>