Publikation:

On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Landsberg, Joseph M.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

SIAM Journal on Applied Algebra and Geometry. Society for Industrial and Applied Mathematics (SIAM). 2017, 1(1), pp. 2-19. eISSN 2470-6566. Available under: doi: 10.1137/16M1067457

Zusammenfassung

We present a new approach to study tensors with symmetry, via local algebraic geometry. Border rank decompositions for such tensors---in particular, matrix multiplication and the determinant polynomial---come in families. We prove that these families include representatives with normal forms. These normal forms will be useful to prove lower complexity bounds and possibly even to determine new decompositions. We derive a border rank version of the substitution method used in proving lower bounds for tensor rank. Applying these methods, we improve the lower bound on the border rank of matrix multiplication. We also point out difficulties that will be formidable obstacles to future progress on lower complexity bounds for tensors because of the “wild” structure of the Hilbert scheme of points.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LANDSBERG, Joseph M., Mateusz MICHALEK, 2017. On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry. In: SIAM Journal on Applied Algebra and Geometry. Society for Industrial and Applied Mathematics (SIAM). 2017, 1(1), pp. 2-19. eISSN 2470-6566. Available under: doi: 10.1137/16M1067457
BibTex
@article{Landsberg2017Geome-52210,
  year={2017},
  doi={10.1137/16M1067457},
  title={On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry},
  number={1},
  volume={1},
  journal={SIAM Journal on Applied Algebra and Geometry},
  pages={2--19},
  author={Landsberg, Joseph M. and Michalek, Mateusz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52210">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T13:40:28Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Landsberg, Joseph M.</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T13:40:28Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52210"/>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dc:contributor>Landsberg, Joseph M.</dc:contributor>
    <dcterms:title>On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">We present a new approach to study tensors with symmetry, via local algebraic geometry. Border rank decompositions for such tensors---in particular, matrix multiplication and the determinant polynomial---come in families. We prove that these families include representatives with normal forms. These normal forms will be useful to prove lower complexity bounds and possibly even to determine new decompositions. We derive a border rank version of the substitution method used in proving lower bounds for tensor rank. Applying these methods, we improve the lower bound on the border rank of matrix multiplication. We also point out difficulties that will be formidable obstacles to future progress on lower complexity bounds for tensors because of the “wild” structure of the Hilbert scheme of points.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen