Publikation:

Evolving robot swarm behaviors by minimizing surprise : results of simulations in 2-d on a Torus

Lade...
Vorschaubild

Dateien

Borkowski_2-mji081u0guhf9.pdf
Borkowski_2-mji081u0guhf9.pdfGröße: 247.02 KBDownloads: 8

Datum

2017

Autor:innen

Borkowski, Richard

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

GECCO '17 : Proceedings of the Genetic and Evolutionary Computation Conference Companion. New York, NY: ACM, 2017, pp. 1679-1680. ISBN 978-1-4503-4939-0. Available under: doi: 10.1145/3067695.3082548

Zusammenfassung

The application of evolutionary robotics [1] to swarm robotics gives evolutionary swarm robotics [8]. The evolution or learning of multi-agent behaviors is known to be challenging [7]. Hence, new approaches still need to be explored. Examples are innovative methods to explore environment-driven, distributed evolution [2, 4]. Here, we are inspired to evolve collective behaviors following a mathematical framework by Friston et al. [3], which defines an information-theoretic analogon to thermodynamic (Helmholtz) free energy. This free energy is basically an error in the predictions that our brain makes about our environment. Evolution is related by the rationale that minimal prediction errors are achieved by limiting an agent's reactions to sensory input. This results, in turn, in better adapted behaviors: "By sampling [...] the environment selectively they restrict their exchange with it within bounds that preserve their physical integrity and allow them to last longer" [3]. The previously investigated evolution of swarm behaviors by minimizing surprisal [5, 6, 9] is subject to this study. Previous studies were limited to artificial 1-d environments, here, we report first results for 2-d. Although adding one dimension may seem a minor step, there are qualitative changes in the emergent behaviors (e.g., flocking is a collective decision with infinitely many options) and the future transition to real robots will be easier starting from 2-d.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

GECCO '17 : Genetic and Evolutionary Computation Conference, 15. Juli 2017 - 19. Juli 2017, Berlin, Germany
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BORKOWSKI, Richard, Heiko HAMANN, 2017. Evolving robot swarm behaviors by minimizing surprise : results of simulations in 2-d on a Torus. GECCO '17 : Genetic and Evolutionary Computation Conference. Berlin, Germany, 15. Juli 2017 - 19. Juli 2017. In: GECCO '17 : Proceedings of the Genetic and Evolutionary Computation Conference Companion. New York, NY: ACM, 2017, pp. 1679-1680. ISBN 978-1-4503-4939-0. Available under: doi: 10.1145/3067695.3082548
BibTex
@inproceedings{Borkowski2017Evolv-59868,
  year={2017},
  doi={10.1145/3067695.3082548},
  title={Evolving robot swarm behaviors by minimizing surprise : results of simulations in 2-d on a Torus},
  isbn={978-1-4503-4939-0},
  publisher={ACM},
  address={New York, NY},
  booktitle={GECCO '17 : Proceedings of the Genetic and Evolutionary Computation Conference Companion},
  pages={1679--1680},
  author={Borkowski, Richard and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59868">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59868/1/Borkowski_2-mji081u0guhf9.pdf"/>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dcterms:title>Evolving robot swarm behaviors by minimizing surprise : results of simulations in 2-d on a Torus</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">The application of evolutionary robotics [1] to swarm robotics gives evolutionary swarm robotics [8]. The evolution or learning of multi-agent behaviors is known to be challenging [7]. Hence, new approaches still need to be explored. Examples are innovative methods to explore environment-driven, distributed evolution [2, 4]. Here, we are inspired to evolve collective behaviors following a mathematical framework by Friston et al. [3], which defines an information-theoretic analogon to thermodynamic (Helmholtz) free energy. This free energy is basically an error in the predictions that our brain makes about our environment. Evolution is related by the rationale that minimal prediction errors are achieved by limiting an agent's reactions to sensory input. This results, in turn, in better adapted behaviors: "By sampling [...] the environment selectively they restrict their exchange with it within bounds that preserve their physical integrity and allow them to last longer" [3]. The previously investigated evolution of swarm behaviors by minimizing surprisal [5, 6, 9] is subject to this study. Previous studies were limited to artificial 1-d environments, here, we report first results for 2-d. Although adding one dimension may seem a minor step, there are qualitative changes in the emergent behaviors (e.g., flocking is a collective decision with infinitely many options) and the future transition to real robots will be easier starting from 2-d.</dcterms:abstract>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hamann, Heiko</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59868"/>
    <dc:contributor>Borkowski, Richard</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59868/1/Borkowski_2-mji081u0guhf9.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-20T13:27:15Z</dcterms:available>
    <dc:creator>Borkowski, Richard</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-20T13:27:15Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen