Publikation: Evolving robot swarm behaviors by minimizing surprise : results of simulations in 2-d on a Torus
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The application of evolutionary robotics [1] to swarm robotics gives evolutionary swarm robotics [8]. The evolution or learning of multi-agent behaviors is known to be challenging [7]. Hence, new approaches still need to be explored. Examples are innovative methods to explore environment-driven, distributed evolution [2, 4]. Here, we are inspired to evolve collective behaviors following a mathematical framework by Friston et al. [3], which defines an information-theoretic analogon to thermodynamic (Helmholtz) free energy. This free energy is basically an error in the predictions that our brain makes about our environment. Evolution is related by the rationale that minimal prediction errors are achieved by limiting an agent's reactions to sensory input. This results, in turn, in better adapted behaviors: "By sampling [...] the environment selectively they restrict their exchange with it within bounds that preserve their physical integrity and allow them to last longer" [3]. The previously investigated evolution of swarm behaviors by minimizing surprisal [5, 6, 9] is subject to this study. Previous studies were limited to artificial 1-d environments, here, we report first results for 2-d. Although adding one dimension may seem a minor step, there are qualitative changes in the emergent behaviors (e.g., flocking is a collective decision with infinitely many options) and the future transition to real robots will be easier starting from 2-d.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BORKOWSKI, Richard, Heiko HAMANN, 2017. Evolving robot swarm behaviors by minimizing surprise : results of simulations in 2-d on a Torus. GECCO '17 : Genetic and Evolutionary Computation Conference. Berlin, Germany, 15. Juli 2017 - 19. Juli 2017. In: GECCO '17 : Proceedings of the Genetic and Evolutionary Computation Conference Companion. New York, NY: ACM, 2017, pp. 1679-1680. ISBN 978-1-4503-4939-0. Available under: doi: 10.1145/3067695.3082548BibTex
@inproceedings{Borkowski2017Evolv-59868, year={2017}, doi={10.1145/3067695.3082548}, title={Evolving robot swarm behaviors by minimizing surprise : results of simulations in 2-d on a Torus}, isbn={978-1-4503-4939-0}, publisher={ACM}, address={New York, NY}, booktitle={GECCO '17 : Proceedings of the Genetic and Evolutionary Computation Conference Companion}, pages={1679--1680}, author={Borkowski, Richard and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59868"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59868/1/Borkowski_2-mji081u0guhf9.pdf"/> <dc:contributor>Hamann, Heiko</dc:contributor> <dcterms:title>Evolving robot swarm behaviors by minimizing surprise : results of simulations in 2-d on a Torus</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">The application of evolutionary robotics [1] to swarm robotics gives evolutionary swarm robotics [8]. The evolution or learning of multi-agent behaviors is known to be challenging [7]. Hence, new approaches still need to be explored. Examples are innovative methods to explore environment-driven, distributed evolution [2, 4]. Here, we are inspired to evolve collective behaviors following a mathematical framework by Friston et al. [3], which defines an information-theoretic analogon to thermodynamic (Helmholtz) free energy. This free energy is basically an error in the predictions that our brain makes about our environment. Evolution is related by the rationale that minimal prediction errors are achieved by limiting an agent's reactions to sensory input. This results, in turn, in better adapted behaviors: "By sampling [...] the environment selectively they restrict their exchange with it within bounds that preserve their physical integrity and allow them to last longer" [3]. The previously investigated evolution of swarm behaviors by minimizing surprisal [5, 6, 9] is subject to this study. Previous studies were limited to artificial 1-d environments, here, we report first results for 2-d. Although adding one dimension may seem a minor step, there are qualitative changes in the emergent behaviors (e.g., flocking is a collective decision with infinitely many options) and the future transition to real robots will be easier starting from 2-d.</dcterms:abstract> <dcterms:issued>2017</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Hamann, Heiko</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59868"/> <dc:contributor>Borkowski, Richard</dc:contributor> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59868/1/Borkowski_2-mji081u0guhf9.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-20T13:27:15Z</dcterms:available> <dc:creator>Borkowski, Richard</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-20T13:27:15Z</dc:date> </rdf:Description> </rdf:RDF>