Publikation: Applying Visual Interactive Dimensionality Reduction to Criminal Intelligence Analysis
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
VALCRI provides a challenging and overwhelming high-dimensional dataset that comprises of hundreds of extracted semantic features in addition to the usual spatiotemporal information or metadata. To overcome the curse of dimensionality and to generate low-dimensional representations of these semantic features we apply interactive high-dimensional data analysis techniques with the goal of obtaining clusters of similar crime reports. However, it is still a challenge for crime analysts to make sense of the results and to provide useful interactive feedback to the system. Therefore, we provide several tightly integrated interactive visualizations that allow the analysts to identify clusters of similar crimes from different perspectives and interactively focus their analysis on features or crime records of particular interest.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SACHA, Dominik, Wolfgang JENTNER, Leishi ZHANG, Florian STOFFEL, Geoffrey ELLIS, Daniel A. KEIM, 2017. Applying Visual Interactive Dimensionality Reduction to Criminal Intelligence AnalysisBibTex
@techreport{Sacha2017Apply-39718, year={2017}, series={VALCRI White Paper Series}, title={Applying Visual Interactive Dimensionality Reduction to Criminal Intelligence Analysis}, number={WP-2017-011}, url={http://valcri.org/publications/white-paper-applying-visual-interactive-dimensionality-reduction-to-criminal-intelligence-analysis/}, author={Sacha, Dominik and Jentner, Wolfgang and Zhang, Leishi and Stoffel, Florian and Ellis, Geoffrey and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39718"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Zhang, Leishi</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Applying Visual Interactive Dimensionality Reduction to Criminal Intelligence Analysis</dcterms:title> <dc:creator>Sacha, Dominik</dc:creator> <dc:language>eng</dc:language> <dcterms:issued>2017</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T11:24:44Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39718"/> <dc:creator>Ellis, Geoffrey</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Jentner, Wolfgang</dc:contributor> <dc:creator>Stoffel, Florian</dc:creator> <dc:creator>Jentner, Wolfgang</dc:creator> <dc:contributor>Stoffel, Florian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Ellis, Geoffrey</dc:contributor> <dc:contributor>Sacha, Dominik</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T11:24:44Z</dc:date> <dcterms:abstract xml:lang="eng">VALCRI provides a challenging and overwhelming high-dimensional dataset that comprises of hundreds of extracted semantic features in addition to the usual spatiotemporal information or metadata. To overcome the curse of dimensionality and to generate low-dimensional representations of these semantic features we apply interactive high-dimensional data analysis techniques with the goal of obtaining clusters of similar crime reports. However, it is still a challenge for crime analysts to make sense of the results and to provide useful interactive feedback to the system. Therefore, we provide several tightly integrated interactive visualizations that allow the analysts to identify clusters of similar crimes from different perspectives and interactively focus their analysis on features or crime records of particular interest.</dcterms:abstract> <dc:creator>Zhang, Leishi</dc:creator> </rdf:Description> </rdf:RDF>