Publikation:

Applying Visual Interactive Dimensionality Reduction to Criminal Intelligence Analysis

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

VALCRI White Paper Series; WP-2017-011

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

VALCRI provides a challenging and overwhelming high-dimensional dataset that comprises of hundreds of extracted semantic features in addition to the usual spatiotemporal information or metadata. To overcome the curse of dimensionality and to generate low-dimensional representations of these semantic features we apply interactive high-dimensional data analysis techniques with the goal of obtaining clusters of similar crime reports. However, it is still a challenge for crime analysts to make sense of the results and to provide useful interactive feedback to the system. Therefore, we provide several tightly integrated interactive visualizations that allow the analysts to identify clusters of similar crimes from different perspectives and interactively focus their analysis on features or crime records of particular interest.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SACHA, Dominik, Wolfgang JENTNER, Leishi ZHANG, Florian STOFFEL, Geoffrey ELLIS, Daniel A. KEIM, 2017. Applying Visual Interactive Dimensionality Reduction to Criminal Intelligence Analysis
BibTex
@techreport{Sacha2017Apply-39718,
  year={2017},
  series={VALCRI White Paper Series},
  title={Applying Visual Interactive Dimensionality Reduction to Criminal Intelligence Analysis},
  number={WP-2017-011},
  url={http://valcri.org/publications/white-paper-applying-visual-interactive-dimensionality-reduction-to-criminal-intelligence-analysis/},
  author={Sacha, Dominik and Jentner, Wolfgang and Zhang, Leishi and Stoffel, Florian and Ellis, Geoffrey and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39718">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Zhang, Leishi</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Applying Visual Interactive Dimensionality Reduction to Criminal Intelligence Analysis</dcterms:title>
    <dc:creator>Sacha, Dominik</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T11:24:44Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39718"/>
    <dc:creator>Ellis, Geoffrey</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <dc:creator>Stoffel, Florian</dc:creator>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <dc:contributor>Stoffel, Florian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Ellis, Geoffrey</dc:contributor>
    <dc:contributor>Sacha, Dominik</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T11:24:44Z</dc:date>
    <dcterms:abstract xml:lang="eng">VALCRI provides a challenging and overwhelming high-dimensional dataset that comprises of hundreds of extracted semantic features in addition to the usual spatiotemporal information or metadata. To overcome the curse of dimensionality and to generate low-dimensional representations of these semantic features we apply interactive high-dimensional data analysis techniques with the goal of obtaining clusters of similar crime reports. However, it is still a challenge for crime analysts to make sense of the results and to provide useful interactive feedback to the system. Therefore, we provide several tightly integrated interactive visualizations that allow the analysts to identify clusters of similar crimes from different perspectives and interactively focus their analysis on features or crime records of particular interest.</dcterms:abstract>
    <dc:creator>Zhang, Leishi</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen