Applying Visual Interactive Dimensionality Reduction to Criminal Intelligence Analysis

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
VALCRI White Paper Series; WP-2017-011
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung

VALCRI provides a challenging and overwhelming high-dimensional dataset that comprises of hundreds of extracted semantic features in addition to the usual spatiotemporal information or metadata. To overcome the curse of dimensionality and to generate low-dimensional representations of these semantic features we apply interactive high-dimensional data analysis techniques with the goal of obtaining clusters of similar crime reports. However, it is still a challenge for crime analysts to make sense of the results and to provide useful interactive feedback to the system. Therefore, we provide several tightly integrated interactive visualizations that allow the analysts to identify clusters of similar crimes from different perspectives and interactively focus their analysis on features or crime records of particular interest.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SACHA, Dominik, Wolfgang JENTNER, Leishi ZHANG, Florian STOFFEL, Geoffrey ELLIS, Daniel A. KEIM, 2017. Applying Visual Interactive Dimensionality Reduction to Criminal Intelligence Analysis
BibTex
@techreport{Sacha2017Apply-39718,
  year={2017},
  series={VALCRI White Paper Series},
  title={Applying Visual Interactive Dimensionality Reduction to Criminal Intelligence Analysis},
  number={WP-2017-011},
  url={http://valcri.org/publications/white-paper-applying-visual-interactive-dimensionality-reduction-to-criminal-intelligence-analysis/},
  author={Sacha, Dominik and Jentner, Wolfgang and Zhang, Leishi and Stoffel, Florian and Ellis, Geoffrey and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39718">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Zhang, Leishi</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Applying Visual Interactive Dimensionality Reduction to Criminal Intelligence Analysis</dcterms:title>
    <dc:creator>Sacha, Dominik</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T11:24:44Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39718"/>
    <dc:creator>Ellis, Geoffrey</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <dc:creator>Stoffel, Florian</dc:creator>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <dc:contributor>Stoffel, Florian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Ellis, Geoffrey</dc:contributor>
    <dc:contributor>Sacha, Dominik</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T11:24:44Z</dc:date>
    <dcterms:abstract xml:lang="eng">VALCRI provides a challenging and overwhelming high-dimensional dataset that comprises of hundreds of extracted semantic features in addition to the usual spatiotemporal information or metadata. To overcome the curse of dimensionality and to generate low-dimensional representations of these semantic features we apply interactive high-dimensional data analysis techniques with the goal of obtaining clusters of similar crime reports. However, it is still a challenge for crime analysts to make sense of the results and to provide useful interactive feedback to the system. Therefore, we provide several tightly integrated interactive visualizations that allow the analysts to identify clusters of similar crimes from different perspectives and interactively focus their analysis on features or crime records of particular interest.</dcterms:abstract>
    <dc:creator>Zhang, Leishi</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet