Publikation:

Modulation Equation for SPDEs in unbounded domains with space-time white noise : Linear Theory

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Blömker, Dirk

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Stochastic Processes and their Applications. 2016, 126(10), pp. 3171-3201. ISSN 0304-4149. eISSN 1879-209X. Available under: doi: 10.1016/j.spa.2016.04.024

Zusammenfassung

We study the approximation of SPDEs on the whole real line near a change of stability via modulation or amplitude equations, which acts as a replacement for the lack of random invariant manifolds on extended domains. Due to the unboundedness of the underlying domain a whole band of infinitely many eigenfunctions changes stability. Thus we expect not only a slow motion in time, but also a slow spatial modulation of the dominant modes, which is described by the modulation equation. As a first step towards a full theory of modulation equations for nonlinear SPDEs on unbounded domains, we focus, in the results presented here, on the linear theory for one particular example, the Swift-Hohenberg equation. These linear results are one of the key technical tools to carry over the deterministic approximation results to the stochastic case with additive forcing. One technical problem for establishing error estimates rises from the spatially translation invariant nature of space-time white noise on unbounded domains, which implies that at any time we can expect the error to be always very large somewhere in space.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Modulation equation, Amplitude equation, Unbounded domain, Random fields, Gaussian, processes, Attractivity, Approximation, Linear theory, Stochastic convolution

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BIANCHI, Luigi Amedeo, Dirk BLÖMKER, 2016. Modulation Equation for SPDEs in unbounded domains with space-time white noise : Linear Theory. In: Stochastic Processes and their Applications. 2016, 126(10), pp. 3171-3201. ISSN 0304-4149. eISSN 1879-209X. Available under: doi: 10.1016/j.spa.2016.04.024
BibTex
@article{Bianchi2016Modul-45299,
  year={2016},
  doi={10.1016/j.spa.2016.04.024},
  title={Modulation Equation for SPDEs in unbounded domains with space-time white noise : Linear Theory},
  number={10},
  volume={126},
  issn={0304-4149},
  journal={Stochastic Processes and their Applications},
  pages={3171--3201},
  author={Bianchi, Luigi Amedeo and Blömker, Dirk}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45299">
    <dc:creator>Blömker, Dirk</dc:creator>
    <dc:contributor>Blömker, Dirk</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2016</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45299"/>
    <dc:contributor>Bianchi, Luigi Amedeo</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Modulation Equation for SPDEs in unbounded domains with space-time white noise : Linear Theory</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">We study the approximation of SPDEs on the whole real line near a change of stability via modulation or amplitude equations, which acts as a replacement for the lack of random invariant manifolds on extended domains. Due to the unboundedness of the underlying domain a whole band of infinitely many eigenfunctions changes stability. Thus we expect not only a slow motion in time, but also a slow spatial modulation of the dominant modes, which is described by the modulation equation. As a first step towards a full theory of modulation equations for nonlinear SPDEs on unbounded domains, we focus, in the results presented here, on the linear theory for one particular example, the Swift-Hohenberg equation. These linear results are one of the key technical tools to carry over the deterministic approximation results to the stochastic case with additive forcing. One technical problem for establishing error estimates rises from the spatially translation invariant nature of space-time white noise on unbounded domains, which implies that at any time we can expect the error to be always very large somewhere in space.</dcterms:abstract>
    <dc:creator>Bianchi, Luigi Amedeo</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-05T10:33:28Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-05T10:33:28Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen