Publikation:

Adversarial Machine Learning for Protecting Against Online Manipulation

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Autor:innen

Cresci, Stefano
Petrocchi, Marinella
Spognardi, Angelo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Internet Computing. IEEE. 2022, 26(2), pp. 47-52. ISSN 1089-7801. eISSN 1941-0131. Available under: doi: 10.1109/MIC.2021.3130380

Zusammenfassung

Adversarial examples are inputs to a machine learning system that result in an incorrect output from that system. Attacks launched through this type of input can cause severe consequences: for example, in the field of image recognition, a stop signal can be misclassified as a speed limit indication. However, adversarial examples also represent the fuel for a flurry of research directions in different domains and applications. Here, we give an overview of how they can be profitably exploited as powerful tools to build stronger learning models, capable of better-withstanding attacks, for two crucial tasks: fake news and social bot detection.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CRESCI, Stefano, Marinella PETROCCHI, Angelo SPOGNARDI, Stefano TOGNAZZI, 2022. Adversarial Machine Learning for Protecting Against Online Manipulation. In: IEEE Internet Computing. IEEE. 2022, 26(2), pp. 47-52. ISSN 1089-7801. eISSN 1941-0131. Available under: doi: 10.1109/MIC.2021.3130380
BibTex
@article{Cresci2022Adver-57836,
  year={2022},
  doi={10.1109/MIC.2021.3130380},
  title={Adversarial Machine Learning for Protecting Against Online Manipulation},
  number={2},
  volume={26},
  issn={1089-7801},
  journal={IEEE Internet Computing},
  pages={47--52},
  author={Cresci, Stefano and Petrocchi, Marinella and Spognardi, Angelo and Tognazzi, Stefano}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57836">
    <dcterms:title>Adversarial Machine Learning for Protecting Against Online Manipulation</dcterms:title>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Tognazzi, Stefano</dc:creator>
    <dc:contributor>Cresci, Stefano</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Tognazzi, Stefano</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-23T13:50:39Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Petrocchi, Marinella</dc:creator>
    <dc:creator>Cresci, Stefano</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57836"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Spognardi, Angelo</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-23T13:50:39Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Petrocchi, Marinella</dc:contributor>
    <dc:contributor>Spognardi, Angelo</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Adversarial examples are inputs to a machine learning system that result in an incorrect output from that system. Attacks launched through this type of input can cause severe consequences: for example, in the field of image recognition, a stop signal can be misclassified as a speed limit indication. However, adversarial examples also represent the fuel for a flurry of research directions in different domains and applications. Here, we give an overview of how they can be profitably exploited as powerful tools to build stronger learning models, capable of better-withstanding attacks, for two crucial tasks: fake news and social bot detection.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen