Publikation:

A guide to null models for animal social network analysis

Lade...
Vorschaubild

Dateien

Farine_2-m5m684xdj9qg1.pdf
Farine_2-m5m684xdj9qg1.pdfGröße: 3.89 MBDownloads: 1086

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Methods in Ecology and Evolution. 2017, 8(10), pp. 1309-1320. ISSN 2041-2096. eISSN 2041-210X. Available under: doi: 10.1111/2041-210X.12772

Zusammenfassung

Null models are an important component of the social network analysis toolbox. However, their use in hypothesis testing is still not widespread. Furthermore, several different approaches for constructing null models exist, each with their relative strengths and weaknesses, and often testing different hypotheses.

In this study, I highlight why null models are important for robust hypothesis testing in studies of animal social networks. Using simulated data containing a known observation bias, I test how different statistical tests and null models perform if such a bias was unknown.

I show that permutations of the raw observational (or ‘pre-network’) data consistently account for underlying structure in the generated social network, and thus can reduce both type I and type II error rates. However, permutations of pre-network data remain relatively uncommon in animal social network analysis because they are challenging to implement for certain data types, particularly those from focal follows and GPS tracking.

I explain simple routines that can easily be implemented across different types of data, and supply R code that applies each type of null model to the same simulated dataset. The R code can easily be modified to test hypotheses with empirical data. Widespread use of pre-network data permutation methods will benefit researchers by facilitating robust hypothesis testing.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FARINE, Damien R., 2017. A guide to null models for animal social network analysis. In: Methods in Ecology and Evolution. 2017, 8(10), pp. 1309-1320. ISSN 2041-2096. eISSN 2041-210X. Available under: doi: 10.1111/2041-210X.12772
BibTex
@article{Farine2017-10guide-40858,
  year={2017},
  doi={10.1111/2041-210X.12772},
  title={A guide to null models for animal social network analysis},
  number={10},
  volume={8},
  issn={2041-2096},
  journal={Methods in Ecology and Evolution},
  pages={1309--1320},
  author={Farine, Damien R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40858">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40858/1/Farine_2-m5m684xdj9qg1.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-06T10:58:51Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Farine, Damien R.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40858/1/Farine_2-m5m684xdj9qg1.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40858"/>
    <dcterms:issued>2017-10</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Null models are an important component of the social network analysis toolbox. However, their use in hypothesis testing is still not widespread. Furthermore, several different approaches for constructing null models exist, each with their relative strengths and weaknesses, and often testing different hypotheses.&lt;br /&gt;&lt;br /&gt;In this study, I highlight why null models are important for robust hypothesis testing in studies of animal social networks. Using simulated data containing a known observation bias, I test how different statistical tests and null models perform if such a bias was unknown.&lt;br /&gt;&lt;br /&gt;I show that permutations of the raw observational (or ‘pre-network’) data consistently account for underlying structure in the generated social network, and thus can reduce both type I and type II error rates. However, permutations of pre-network data remain relatively uncommon in animal social network analysis because they are challenging to implement for certain data types, particularly those from focal follows and GPS tracking.&lt;br /&gt;&lt;br /&gt;I explain simple routines that can easily be implemented across different types of data, and supply R code that applies each type of null model to the same simulated dataset. The R code can easily be modified to test hypotheses with empirical data. Widespread use of pre-network data permutation methods will benefit researchers by facilitating robust hypothesis testing.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-06T10:58:51Z</dc:date>
    <dc:creator>Farine, Damien R.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:title>A guide to null models for animal social network analysis</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen