Publikation:

Scalable Visual Data Exploration of Large Data Sets via MultiResolution

Lade...
Vorschaubild

Dateien

jucs_11_11_1766_1779_keim.pdf
jucs_11_11_1766_1779_keim.pdfGröße: 631.57 KBDownloads: 205

Datum

2005

Autor:innen

Schneidewind, Jörn

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of universal computer science. 2005, 11(11), pp. 1766-1779. ISSN 0948-695X. eISSN 0948-6968. Available under: doi: 10.3217/jucs-011-11-1766

Zusammenfassung

During the last decade Visual Exploration and Visual Data Mining techniques have proven to be of high value in exploratory data analysis since they combine human visual perception and recognition capabilities with the enormous storage capacity and the computational power of today's computer systems in order to detect patterns and trends in the data. But the ever increasing mass of information leads to new challenges on visualization techniques and concepts. Due to technological progress in computer power and storage capacity today's scientific and commercial applications are capable of generating, storing and processing massive amounts of data. Most existing visualization metaphors and concepts do not scale well on such large data sets as interaction capabilities and visual representations suffer from the massive number of data points. To bridge this gap, Visual Analytics aim to incorporate more intelligent means than to just retrieve and display the data items to filter the relevant from the non-relevant data. In this context the paper introduces a new approach based on a Multiresolution paradigm to increase the scalability of existing Visual data exploration techniques. The basic idea is to provide relevance driven compact representations of the underlying data set that present the data at different granularities. In the visualization step the available display space is then distributed according to the data granularity, to emphasize relevant information. The paper aims at introducing a technical base of Multiresolution visualization and provides an application example that shows the usefulness of the proposed approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visual Data Exploration, Visualization Technique, Multiresolution

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., Jörn SCHNEIDEWIND, 2005. Scalable Visual Data Exploration of Large Data Sets via MultiResolution. In: Journal of universal computer science. 2005, 11(11), pp. 1766-1779. ISSN 0948-695X. eISSN 0948-6968. Available under: doi: 10.3217/jucs-011-11-1766
BibTex
@article{Keim2005Scala-5449,
  year={2005},
  doi={10.3217/jucs-011-11-1766},
  title={Scalable Visual Data Exploration of Large Data Sets via MultiResolution},
  number={11},
  volume={11},
  issn={0948-695X},
  journal={Journal of universal computer science},
  pages={1766--1779},
  author={Keim, Daniel A. and Schneidewind, Jörn}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5449">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2005</dcterms:issued>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:31Z</dcterms:available>
    <dcterms:title>Scalable Visual Data Exploration of Large Data Sets via MultiResolution</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5449/1/jucs_11_11_1766_1779_keim.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5449"/>
    <dcterms:bibliographicCitation>First publ. in: Journal of universal computer science 11 (2005), 11, pp. 1766-1779</dcterms:bibliographicCitation>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5449/1/jucs_11_11_1766_1779_keim.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:31Z</dc:date>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:format>application/pdf</dc:format>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">During the last decade Visual Exploration and Visual Data Mining techniques have proven to be of high value in exploratory data analysis since they combine human visual perception and recognition capabilities with the enormous storage capacity and the computational power of today's computer systems in order to detect patterns and trends in the data. But the ever increasing mass of information leads to new challenges on visualization techniques and concepts. Due to technological progress in computer power and storage capacity today's scientific and commercial applications are capable of generating, storing and processing massive amounts of data. Most existing visualization metaphors and concepts do not scale well on such large data sets as interaction capabilities and visual representations suffer from the massive number of data points. To bridge this gap, Visual Analytics aim to incorporate more intelligent means than to just retrieve and display the data items to filter the relevant from the non-relevant data. In this context the paper introduces a new approach based on a Multiresolution paradigm to increase the scalability of existing Visual data exploration techniques. The basic idea is to provide relevance driven compact representations of the underlying data set that present the data at different granularities. In the visualization step the available display space is then distributed according to the data granularity, to emphasize relevant information. The paper aims at introducing a technical base of Multiresolution visualization and provides an application example that shows the usefulness of the proposed approach.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen