Publikation:

Predicting intent behind selections in scatterplot visualizations

Lade...
Vorschaubild

Dateien

Gadhave_2-lu8hwkr6ntaj2.pdf
Gadhave_2-lu8hwkr6ntaj2.pdfGröße: 3.47 MBDownloads: 657

Datum

2021

Autor:innen

Gadhave, Kiran
Cutler, Zach
Nobre, Carolina
Meyer, Miriah
Phillips, Jeff M.
Lex, Alexander

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Information Visualization. Sage Publications. 2021, 20(4), pp. 207-228. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/14738716211038604

Zusammenfassung

Predicting and capturing an analyst’s intent behind a selection in a data visualization is valuable in two scenarios: First, a successful prediction of a pattern an analyst intended to select can be used to auto-complete a partial selection which, in turn, can improve the correctness of the selection. Second, knowing the intent behind a selection can be used to improve recall and reproducibility. In this paper, we introduce methods to infer analyst’s intents behind selections in data visualizations, such as scatterplots. We describe intents based on patterns in the data, and identify algorithms that can capture these patterns. Upon an interactive selection, we compare the selected items with the results of a large set of computed patterns, and use various ranking approaches to identify the best pattern for an analyst’s selection. We store annotations and the metadata to reconstruct a selection, such as the type of algorithm and its parameterization, in a provenance graph. We present a prototype system that implements these methods for tabular data and scatterplots. Analysts can select a prediction to auto-complete partial selections and to seamlessly log their intents. We discuss implications of our approach for reproducibility and reuse of analysis workflows. We evaluate our approach in a crowd-sourced study, where we show that auto-completing selection improves accuracy, and that we can accurately capture pattern-based intent.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Provenance, reproducibility, intent, brushing, selections

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GADHAVE, Kiran, Jochen GÖRTLER, Zach CUTLER, Carolina NOBRE, Oliver DEUSSEN, Miriah MEYER, Jeff M. PHILLIPS, Alexander LEX, 2021. Predicting intent behind selections in scatterplot visualizations. In: Information Visualization. Sage Publications. 2021, 20(4), pp. 207-228. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/14738716211038604
BibTex
@article{Gadhave2021Predi-54767,
  year={2021},
  doi={10.1177/14738716211038604},
  title={Predicting intent behind selections in scatterplot visualizations},
  number={4},
  volume={20},
  issn={1473-8716},
  journal={Information Visualization},
  pages={207--228},
  author={Gadhave, Kiran and Görtler, Jochen and Cutler, Zach and Nobre, Carolina and Deussen, Oliver and Meyer, Miriah and Phillips, Jeff M. and Lex, Alexander}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54767">
    <dc:contributor>Nobre, Carolina</dc:contributor>
    <dc:creator>Phillips, Jeff M.</dc:creator>
    <dcterms:issued>2021</dcterms:issued>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:contributor>Meyer, Miriah</dc:contributor>
    <dc:creator>Cutler, Zach</dc:creator>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Phillips, Jeff M.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54767"/>
    <dc:creator>Nobre, Carolina</dc:creator>
    <dc:creator>Görtler, Jochen</dc:creator>
    <dc:contributor>Gadhave, Kiran</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-01T13:46:43Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Cutler, Zach</dc:contributor>
    <dcterms:title>Predicting intent behind selections in scatterplot visualizations</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Predicting and capturing an analyst’s intent behind a selection in a data visualization is valuable in two scenarios: First, a successful prediction of a pattern an analyst intended to select can be used to auto-complete a partial selection which, in turn, can improve the correctness of the selection. Second, knowing the intent behind a selection can be used to improve recall and reproducibility. In this paper, we introduce methods to infer analyst’s intents behind selections in data visualizations, such as scatterplots. We describe intents based on patterns in the data, and identify algorithms that can capture these patterns. Upon an interactive selection, we compare the selected items with the results of a large set of computed patterns, and use various ranking approaches to identify the best pattern for an analyst’s selection. We store annotations and the metadata to reconstruct a selection, such as the type of algorithm and its parameterization, in a provenance graph. We present a prototype system that implements these methods for tabular data and scatterplots. Analysts can select a prediction to auto-complete partial selections and to seamlessly log their intents. We discuss implications of our approach for reproducibility and reuse of analysis workflows. We evaluate our approach in a crowd-sourced study, where we show that auto-completing selection improves accuracy, and that we can accurately capture pattern-based intent.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Gadhave, Kiran</dc:creator>
    <dc:creator>Meyer, Miriah</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-01T13:46:43Z</dc:date>
    <dc:contributor>Lex, Alexander</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54767/1/Gadhave_2-lu8hwkr6ntaj2.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54767/1/Gadhave_2-lu8hwkr6ntaj2.pdf"/>
    <dc:contributor>Görtler, Jochen</dc:contributor>
    <dc:creator>Lex, Alexander</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen