Publikation:

Pixel based Visual Mining of Geo-Spatial Data

Lade...
Vorschaubild

Dateien

PSN04.pdf
PSN04.pdfGröße: 1.75 MBDownloads: 765

Datum

2004

Autor:innen

Panse, Christian
Sips, Mike
North, Stephen C.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computers and graphics. 2004, 28(3), pp. 327-344. Available under: doi: 10.1016/j.cag.2004.03.022

Zusammenfassung

In many application domains, data is collected and referenced by geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. A noteworthy trend is the increasing size of data sets in common use, such as records of business transactions, environmental data and census demographics. These data sets often contain millions of records, or even far more. This situation creates new challenges in coping with scale. For data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today s computers. Visual data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual data mining techniques, especially for analyzing geo-spatial data. We provide examples for effective visualizations of geo-spatial data in important application areas such as consumer analysis and census demographics.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Information Visualization, Visual Data Mining, Spatial Data Mining

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., Christian PANSE, Mike SIPS, Stephen C. NORTH, 2004. Pixel based Visual Mining of Geo-Spatial Data. In: Computers and graphics. 2004, 28(3), pp. 327-344. Available under: doi: 10.1016/j.cag.2004.03.022
BibTex
@article{Keim2004Pixel-5441,
  year={2004},
  doi={10.1016/j.cag.2004.03.022},
  title={Pixel based Visual Mining of Geo-Spatial Data},
  number={3},
  volume={28},
  journal={Computers and graphics},
  pages={327--344},
  author={Keim, Daniel A. and Panse, Christian and Sips, Mike and North, Stephen C.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5441">
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: Computers and graphics 28 (2004), 3, pp. 327-344</dcterms:bibliographicCitation>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:28Z</dc:date>
    <dc:contributor>North, Stephen C.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:creator>Panse, Christian</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5441"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5441/1/PSN04.pdf"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>North, Stephen C.</dc:creator>
    <dc:contributor>Panse, Christian</dc:contributor>
    <dcterms:abstract xml:lang="eng">In many application domains, data is collected and referenced by geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. A noteworthy trend is the increasing size of data sets in common use, such as records of business transactions, environmental data and census demographics. These data sets often contain millions of records, or even far more. This situation creates new challenges in coping with scale. For data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today s computers. Visual data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual data mining techniques, especially for analyzing geo-spatial data. We provide examples for effective visualizations of geo-spatial data in important application areas such as consumer analysis and census demographics.</dcterms:abstract>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2004</dcterms:issued>
    <dcterms:title>Pixel based Visual Mining of Geo-Spatial Data</dcterms:title>
    <dc:contributor>Sips, Mike</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5441/1/PSN04.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:28Z</dcterms:available>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:creator>Sips, Mike</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen