Publikation: Perspective: Data in personalized nutrition: Bridging biomedical, psycho-behavioral, and food environment approaches for population-wide impact
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Personalized Nutrition (PN) represents an approach aimed at delivering tailored dietary recommendations, products or services to support both prevention and treatment of nutrition-related conditions and improve individual health using genetic, phenotypic, medical, nutritional, and other pertinent information. However, current approaches have yielded limited scientific success in improving diets or in mitigating diet-related conditions. In addition, PN currently caters to a specific subgroup of the population rather than having a widespread impact on diet and health at a population level. Addressing these challenges requires integrating traditional biomedical and dietary assessment methods with psycho-behavioral, and novel digital and diagnostic methods for comprehensive data collection, which holds considerable promise in alleviating present PN shortcomings. This comprehensive approach not only allows for deriving personalized goals (“what should be achieved”) but also customizing behavioral change processes (“how to bring about change”). We herein outline and discuss the concept of “Adaptive Personalized Nutrition Advice Systems” (APNASs), which blends data from three assessment domains: 1) biomedical/health phenotyping; 2) stable and dynamic behavioral signatures; and 3) food environment data. Personalized goals and behavior change processes are envisaged to no longer be based solely on static data but will adapt dynamically in-time and in-situ based on individual-specific data. To successfully integrate biomedical, behavioral and environmental data for personalized dietary guidance, advanced digital tools (e.g., sensors) and artificial intelligence (AI)-based methods will be essential. In conclusion, the integration of both established and novel static and dynamic assessment paradigms holds great potential for transitioning PN from its current focus on elite nutrition to a widely accessible tool that delivers meaningful health benefits to the general population.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LINSEISEN, Jakob, Britta RENNER, Kurt GEDRICH, Jan WIRSAM, Christina HOLZAPFEL, Stefan LORKOWSKI, Bernhard WATZL, Hannelore DANIEL, Michael LEITZMANN, 2025. Perspective: Data in personalized nutrition: Bridging biomedical, psycho-behavioral, and food environment approaches for population-wide impact. In: Advances in Nutrition. Elsevier BV, 100377. ISSN 2161-8313. Verfügbar unter: doi: 10.1016/j.advnut.2025.100377BibTex
@article{Linseisen2025-01Persp-72022, title={Perspective: Data in personalized nutrition: Bridging biomedical, psycho-behavioral, and food environment approaches for population-wide impact}, year={2025}, doi={10.1016/j.advnut.2025.100377}, issn={2161-8313}, journal={Advances in Nutrition}, author={Linseisen, Jakob and Renner, Britta and Gedrich, Kurt and Wirsam, Jan and Holzapfel, Christina and Lorkowski, Stefan and Watzl, Bernhard and Daniel, Hannelore and Leitzmann, Michael}, note={Article Number: 100377} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72022"> <dc:contributor>Daniel, Hannelore</dc:contributor> <dcterms:abstract>Personalized Nutrition (PN) represents an approach aimed at delivering tailored dietary recommendations, products or services to support both prevention and treatment of nutrition-related conditions and improve individual health using genetic, phenotypic, medical, nutritional, and other pertinent information. However, current approaches have yielded limited scientific success in improving diets or in mitigating diet-related conditions. In addition, PN currently caters to a specific subgroup of the population rather than having a widespread impact on diet and health at a population level. Addressing these challenges requires integrating traditional biomedical and dietary assessment methods with psycho-behavioral, and novel digital and diagnostic methods for comprehensive data collection, which holds considerable promise in alleviating present PN shortcomings. This comprehensive approach not only allows for deriving personalized goals (“what should be achieved”) but also customizing behavioral change processes (“how to bring about change”). We herein outline and discuss the concept of “Adaptive Personalized Nutrition Advice Systems” (APNASs), which blends data from three assessment domains: 1) biomedical/health phenotyping; 2) stable and dynamic behavioral signatures; and 3) food environment data. Personalized goals and behavior change processes are envisaged to no longer be based solely on static data but will adapt dynamically in-time and in-situ based on individual-specific data. To successfully integrate biomedical, behavioral and environmental data for personalized dietary guidance, advanced digital tools (e.g., sensors) and artificial intelligence (AI)-based methods will be essential. In conclusion, the integration of both established and novel static and dynamic assessment paradigms holds great potential for transitioning PN from its current focus on elite nutrition to a widely accessible tool that delivers meaningful health benefits to the general population.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72022"/> <dcterms:title>Perspective: Data in personalized nutrition: Bridging biomedical, psycho-behavioral, and food environment approaches for population-wide impact</dcterms:title> <dc:contributor>Gedrich, Kurt</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-23T07:54:56Z</dc:date> <dc:creator>Lorkowski, Stefan</dc:creator> <dc:contributor>Watzl, Bernhard</dc:contributor> <dc:creator>Daniel, Hannelore</dc:creator> <dc:creator>Leitzmann, Michael</dc:creator> <dc:contributor>Holzapfel, Christina</dc:contributor> <dc:contributor>Linseisen, Jakob</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-23T07:54:56Z</dcterms:available> <dc:contributor>Leitzmann, Michael</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:contributor>Wirsam, Jan</dc:contributor> <dc:contributor>Lorkowski, Stefan</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Watzl, Bernhard</dc:creator> <dcterms:issued>2025-01</dcterms:issued> <dc:language>eng</dc:language> <dc:creator>Linseisen, Jakob</dc:creator> <dc:creator>Holzapfel, Christina</dc:creator> <dc:creator>Renner, Britta</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Gedrich, Kurt</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Wirsam, Jan</dc:creator> <dc:contributor>Renner, Britta</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> </rdf:Description> </rdf:RDF>