Publikation:

Perspective: Data in personalized nutrition: Bridging biomedical, psycho-behavioral, and food environment approaches for population-wide impact

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Linseisen, Jakob
Gedrich, Kurt
Wirsam, Jan
Holzapfel, Christina
Lorkowski, Stefan
Watzl, Bernhard
Daniel, Hannelore
Leitzmann, Michael

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advances in Nutrition. Elsevier BV, 100377. ISSN 2161-8313. Verfügbar unter: doi: 10.1016/j.advnut.2025.100377

Zusammenfassung

Personalized Nutrition (PN) represents an approach aimed at delivering tailored dietary recommendations, products or services to support both prevention and treatment of nutrition-related conditions and improve individual health using genetic, phenotypic, medical, nutritional, and other pertinent information. However, current approaches have yielded limited scientific success in improving diets or in mitigating diet-related conditions. In addition, PN currently caters to a specific subgroup of the population rather than having a widespread impact on diet and health at a population level. Addressing these challenges requires integrating traditional biomedical and dietary assessment methods with psycho-behavioral, and novel digital and diagnostic methods for comprehensive data collection, which holds considerable promise in alleviating present PN shortcomings. This comprehensive approach not only allows for deriving personalized goals (“what should be achieved”) but also customizing behavioral change processes (“how to bring about change”). We herein outline and discuss the concept of “Adaptive Personalized Nutrition Advice Systems” (APNASs), which blends data from three assessment domains: 1) biomedical/health phenotyping; 2) stable and dynamic behavioral signatures; and 3) food environment data. Personalized goals and behavior change processes are envisaged to no longer be based solely on static data but will adapt dynamically in-time and in-situ based on individual-specific data. To successfully integrate biomedical, behavioral and environmental data for personalized dietary guidance, advanced digital tools (e.g., sensors) and artificial intelligence (AI)-based methods will be essential. In conclusion, the integration of both established and novel static and dynamic assessment paradigms holds great potential for transitioning PN from its current focus on elite nutrition to a widely accessible tool that delivers meaningful health benefits to the general population.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LINSEISEN, Jakob, Britta RENNER, Kurt GEDRICH, Jan WIRSAM, Christina HOLZAPFEL, Stefan LORKOWSKI, Bernhard WATZL, Hannelore DANIEL, Michael LEITZMANN, 2025. Perspective: Data in personalized nutrition: Bridging biomedical, psycho-behavioral, and food environment approaches for population-wide impact. In: Advances in Nutrition. Elsevier BV, 100377. ISSN 2161-8313. Verfügbar unter: doi: 10.1016/j.advnut.2025.100377
BibTex
@article{Linseisen2025-01Persp-72022,
  title={Perspective: Data in personalized nutrition: Bridging biomedical, psycho-behavioral, and food environment approaches for population-wide impact},
  year={2025},
  doi={10.1016/j.advnut.2025.100377},
  issn={2161-8313},
  journal={Advances in Nutrition},
  author={Linseisen, Jakob and Renner, Britta and Gedrich, Kurt and Wirsam, Jan and Holzapfel, Christina and Lorkowski, Stefan and Watzl, Bernhard and Daniel, Hannelore and Leitzmann, Michael},
  note={Article Number: 100377}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72022">
    <dc:contributor>Daniel, Hannelore</dc:contributor>
    <dcterms:abstract>Personalized Nutrition (PN) represents an approach aimed at delivering tailored dietary recommendations, products or services to support both prevention and treatment of nutrition-related conditions and improve individual health using genetic, phenotypic, medical, nutritional, and other pertinent information. However, current approaches have yielded limited scientific success in improving diets or in mitigating diet-related conditions. In addition, PN currently caters to a specific subgroup of the population rather than having a widespread impact on diet and health at a population level. Addressing these challenges requires integrating traditional biomedical and dietary assessment methods with psycho-behavioral, and novel digital and diagnostic methods for comprehensive data collection, which holds considerable promise in alleviating present PN shortcomings. This comprehensive approach not only allows for deriving personalized goals (“what should be achieved”) but also customizing behavioral change processes (“how to bring about change”). We herein outline and discuss the concept of “Adaptive Personalized Nutrition Advice Systems” (APNASs), which blends data from three assessment domains: 1) biomedical/health phenotyping; 2) stable and dynamic behavioral signatures; and 3) food environment data. Personalized goals and behavior change processes are envisaged to no longer be based solely on static data but will adapt dynamically in-time and in-situ based on individual-specific data. To successfully integrate biomedical, behavioral and environmental data for personalized dietary guidance, advanced digital tools (e.g., sensors) and artificial intelligence (AI)-based methods will be essential. In conclusion, the integration of both established and novel static and dynamic assessment paradigms holds great potential for transitioning PN from its current focus on elite nutrition to a widely accessible tool that delivers meaningful health benefits to the general population.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72022"/>
    <dcterms:title>Perspective: Data in personalized nutrition: Bridging biomedical, psycho-behavioral, and food environment approaches for population-wide impact</dcterms:title>
    <dc:contributor>Gedrich, Kurt</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-23T07:54:56Z</dc:date>
    <dc:creator>Lorkowski, Stefan</dc:creator>
    <dc:contributor>Watzl, Bernhard</dc:contributor>
    <dc:creator>Daniel, Hannelore</dc:creator>
    <dc:creator>Leitzmann, Michael</dc:creator>
    <dc:contributor>Holzapfel, Christina</dc:contributor>
    <dc:contributor>Linseisen, Jakob</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-23T07:54:56Z</dcterms:available>
    <dc:contributor>Leitzmann, Michael</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Wirsam, Jan</dc:contributor>
    <dc:contributor>Lorkowski, Stefan</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Watzl, Bernhard</dc:creator>
    <dcterms:issued>2025-01</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:creator>Linseisen, Jakob</dc:creator>
    <dc:creator>Holzapfel, Christina</dc:creator>
    <dc:creator>Renner, Britta</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Gedrich, Kurt</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Wirsam, Jan</dc:creator>
    <dc:contributor>Renner, Britta</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen