Publikation:

Centrality as a predictor of lethal proteins : performance and robustness

Lade...
Vorschaubild

Dateien

Brandes_278071.pdf
Brandes_278071.pdfGröße: 127.1 KBDownloads: 421

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

FISCHBACH, Kai, ed. and others. MMB & DFT 2014 : Proceedings of the International Workshops ; Modeling, Analysis and Management of Social Networks and Their Applications (SOCNET 2014) & Demand Modeling and Quantitative Analysis of Future Generation Energy Networks and Energy-Efficient Systems (FGENET 2014). Bamberg: Univ. of Bamberg Press, 2014, pp. 11-18. Schriften aus der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-Friedrich-Universität Bamberg. 16. ISBN 978-3-86309-208-5

Zusammenfassung

The Centrality-Lethality Hypothesis states that proteins with a higher degree centrality are more likely to be lethal, i.e. proteins involved in more interactions are more likely to cause death when knocked off. This proposition gave rise to several new investigations in which stronger associations were obtained for other centrality measures. Most of this previous work focused on the well known protein-interaction network of Saccharomyces cerevisiae. In a recent study, however, it was found
that degree and betweenness of lethal proteins is significantly above average across 20 different protein-interaction networks. Closeness centrality, on the other hand, did not perform as well.

We replicate this study and show that the reported results are due largely to a misapplication of closeness to disconnected networks. A more suitable variant actually turns out to be a better predictor than betweenness and degree in most of the networks. Worse, we find that despite the different theoretical explanations they offer, the performance ranking of centrality indices varies across networks and depends on the somewhat arbitrary derivation of binary network data from unreliable measurements. Our results suggest that the celebrated hypothesis is not supported
by data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Network Centrality, Protein Networks, Centrality-Lethality

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRANDES, Ulrik, David SCHOCH, 2014. Centrality as a predictor of lethal proteins : performance and robustness. In: FISCHBACH, Kai, ed. and others. MMB & DFT 2014 : Proceedings of the International Workshops ; Modeling, Analysis and Management of Social Networks and Their Applications (SOCNET 2014) & Demand Modeling and Quantitative Analysis of Future Generation Energy Networks and Energy-Efficient Systems (FGENET 2014). Bamberg: Univ. of Bamberg Press, 2014, pp. 11-18. Schriften aus der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-Friedrich-Universität Bamberg. 16. ISBN 978-3-86309-208-5
BibTex
@inproceedings{Brandes2014Centr-27807,
  year={2014},
  title={Centrality as a predictor of lethal proteins : performance and robustness},
  number={16},
  isbn={978-3-86309-208-5},
  publisher={Univ. of Bamberg Press},
  address={Bamberg},
  series={Schriften aus der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-Friedrich-Universität Bamberg},
  booktitle={MMB & DFT 2014 : Proceedings of the International Workshops ; Modeling, Analysis and Management of Social Networks and Their Applications (SOCNET 2014) & Demand Modeling and Quantitative Analysis of Future Generation Energy Networks and Energy-Efficient Systems (FGENET 2014)},
  pages={11--18},
  editor={Fischbach, Kai},
  author={Brandes, Ulrik and Schoch, David},
  note={Link zur Originalveröffentlichung: http://nbn-resolving.de/urn:nbn:de:bvb:473-opus4-64867}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27807">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-22T08:06:28Z</dc:date>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27807/2/Brandes_278071.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Centrality as a predictor of lethal proteins : performance and robustness</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">The Centrality-Lethality Hypothesis states that proteins with a higher degree centrality are more likely to be lethal, i.e. proteins involved in more interactions are more likely to cause death when knocked off. This proposition gave rise to several new investigations in which stronger associations were obtained for other centrality measures. Most of this previous work focused on the well known protein-interaction network of Saccharomyces cerevisiae. In a recent study, however, it was found&lt;br /&gt;that degree and betweenness of lethal proteins is significantly above average across 20 different protein-interaction networks. Closeness centrality, on the other hand, did not perform as well.&lt;br /&gt;&lt;br /&gt;We replicate this study and show that the reported results are due largely to a misapplication of closeness to disconnected networks. A more suitable variant actually turns out to be a better predictor than betweenness and degree in most of the networks. Worse, we find that despite the different theoretical explanations they offer, the performance ranking of centrality indices varies across networks and depends on the somewhat arbitrary derivation of binary network data from unreliable measurements. Our results suggest that the celebrated hypothesis is not supported&lt;br /&gt;by data.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27807/2/Brandes_278071.pdf"/>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dcterms:bibliographicCitation>MMB &amp; DFT 2014 : Proceedings of the International Workshops ; Modeling, Analysis and Management of Social Networks and Their Applications (SOCNET 2014) &amp; Demand Modeling and Quantitative Analysis of Future Generation Energy Networks and Energy-Efficient Systems (FGENET 2014) / Fischbach, Kai ... (eds.). - Bamberg : Univ. of Bamberg Press, 2014. - S. 11-18. - (Schriften aus der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-Friedrich-Universität Bamberg ; 16). - ISBN 978-3-86309-208-5</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-22T08:06:28Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Schoch, David</dc:creator>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dc:contributor>Schoch, David</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27807"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Link zur Originalveröffentlichung: http://nbn-resolving.de/urn:nbn:de:bvb:473-opus4-64867
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen