Publikation: Centrality as a predictor of lethal proteins : performance and robustness
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The Centrality-Lethality Hypothesis states that proteins with a higher degree centrality are more likely to be lethal, i.e. proteins involved in more interactions are more likely to cause death when knocked off. This proposition gave rise to several new investigations in which stronger associations were obtained for other centrality measures. Most of this previous work focused on the well known protein-interaction network of Saccharomyces cerevisiae. In a recent study, however, it was found
that degree and betweenness of lethal proteins is significantly above average across 20 different protein-interaction networks. Closeness centrality, on the other hand, did not perform as well.
We replicate this study and show that the reported results are due largely to a misapplication of closeness to disconnected networks. A more suitable variant actually turns out to be a better predictor than betweenness and degree in most of the networks. Worse, we find that despite the different theoretical explanations they offer, the performance ranking of centrality indices varies across networks and depends on the somewhat arbitrary derivation of binary network data from unreliable measurements. Our results suggest that the celebrated hypothesis is not supported
by data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BRANDES, Ulrik, David SCHOCH, 2014. Centrality as a predictor of lethal proteins : performance and robustness. In: FISCHBACH, Kai, ed. and others. MMB & DFT 2014 : Proceedings of the International Workshops ; Modeling, Analysis and Management of Social Networks and Their Applications (SOCNET 2014) & Demand Modeling and Quantitative Analysis of Future Generation Energy Networks and Energy-Efficient Systems (FGENET 2014). Bamberg: Univ. of Bamberg Press, 2014, pp. 11-18. Schriften aus der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-Friedrich-Universität Bamberg. 16. ISBN 978-3-86309-208-5BibTex
@inproceedings{Brandes2014Centr-27807, year={2014}, title={Centrality as a predictor of lethal proteins : performance and robustness}, number={16}, isbn={978-3-86309-208-5}, publisher={Univ. of Bamberg Press}, address={Bamberg}, series={Schriften aus der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-Friedrich-Universität Bamberg}, booktitle={MMB & DFT 2014 : Proceedings of the International Workshops ; Modeling, Analysis and Management of Social Networks and Their Applications (SOCNET 2014) & Demand Modeling and Quantitative Analysis of Future Generation Energy Networks and Energy-Efficient Systems (FGENET 2014)}, pages={11--18}, editor={Fischbach, Kai}, author={Brandes, Ulrik and Schoch, David}, note={Link zur Originalveröffentlichung: http://nbn-resolving.de/urn:nbn:de:bvb:473-opus4-64867} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27807"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-22T08:06:28Z</dc:date> <dcterms:issued>2014</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27807/2/Brandes_278071.pdf"/> <dc:language>eng</dc:language> <dcterms:title>Centrality as a predictor of lethal proteins : performance and robustness</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">The Centrality-Lethality Hypothesis states that proteins with a higher degree centrality are more likely to be lethal, i.e. proteins involved in more interactions are more likely to cause death when knocked off. This proposition gave rise to several new investigations in which stronger associations were obtained for other centrality measures. Most of this previous work focused on the well known protein-interaction network of Saccharomyces cerevisiae. In a recent study, however, it was found<br />that degree and betweenness of lethal proteins is significantly above average across 20 different protein-interaction networks. Closeness centrality, on the other hand, did not perform as well.<br /><br />We replicate this study and show that the reported results are due largely to a misapplication of closeness to disconnected networks. A more suitable variant actually turns out to be a better predictor than betweenness and degree in most of the networks. Worse, we find that despite the different theoretical explanations they offer, the performance ranking of centrality indices varies across networks and depends on the somewhat arbitrary derivation of binary network data from unreliable measurements. Our results suggest that the celebrated hypothesis is not supported<br />by data.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27807/2/Brandes_278071.pdf"/> <dc:creator>Brandes, Ulrik</dc:creator> <dcterms:bibliographicCitation>MMB & DFT 2014 : Proceedings of the International Workshops ; Modeling, Analysis and Management of Social Networks and Their Applications (SOCNET 2014) & Demand Modeling and Quantitative Analysis of Future Generation Energy Networks and Energy-Efficient Systems (FGENET 2014) / Fischbach, Kai ... (eds.). - Bamberg : Univ. of Bamberg Press, 2014. - S. 11-18. - (Schriften aus der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-Friedrich-Universität Bamberg ; 16). - ISBN 978-3-86309-208-5</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-22T08:06:28Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:creator>Schoch, David</dc:creator> <dc:contributor>Brandes, Ulrik</dc:contributor> <dc:contributor>Schoch, David</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27807"/> </rdf:Description> </rdf:RDF>