Publikation: Newton Methods for the Optimal Control of Closed Quantum Spin Systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
An efficient and robust computational framework for solving closed quantum spin optimal-control and exact-controllability problems with control constraints is presented. Closed spin systems are of fundamental importance in modern quantum technologies such as nuclear magnetic resonance (NMR) spectroscopy, quantum imaging, and quantum computing. These systems are modeled by the Liouville--von Neumann master (LvNM) equation describing the time evolution of the density operator representing the state of the system. A unifying setting is provided to discuss optimal-control and exact-controllability results. Different controllability results for the LvNM model are given, and necessary optimality conditions for the LvNM control problems are analyzed. Existence and regularity of optimal controls are proved. The computational framework is based on matrix-free reduced-Hessian semismooth Krylov--Newton schemes for solving optimal-control problems of the LvNM equation in a real vector space rotating-frame representation. A continuation technique is designed to solve closed spin exact-controllability problems that is based on the solution of an appropriately formulated optimal-control problem. These computational strategies are put into a rigorous theoretical framework, proving convergence to the solutions sought. Results of numerical experiments validate the theoretical results and demonstrate the computational ability of the proposed framework to solve closed quantum spin control problems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CIARAMELLA, Gabriele, Alfio BORZÌ, Gunther DIRR, Daniel WACHSMUTH, 2015. Newton Methods for the Optimal Control of Closed Quantum Spin Systems. In: SIAM Journal on Scientific Computing. 2015, 37(1), pp. A319-A346. ISSN 1064-8275. eISSN 1095-7197. Available under: doi: 10.1137/140966988BibTex
@article{Ciaramella2015-01Newto-41217, year={2015}, doi={10.1137/140966988}, title={Newton Methods for the Optimal Control of Closed Quantum Spin Systems}, number={1}, volume={37}, issn={1064-8275}, journal={SIAM Journal on Scientific Computing}, pages={A319--A346}, author={Ciaramella, Gabriele and Borzì, Alfio and Dirr, Gunther and Wachsmuth, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41217"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-02T13:52:48Z</dc:date> <dc:contributor>Dirr, Gunther</dc:contributor> <dcterms:issued>2015-01</dcterms:issued> <dc:creator>Ciaramella, Gabriele</dc:creator> <dcterms:abstract xml:lang="eng">An efficient and robust computational framework for solving closed quantum spin optimal-control and exact-controllability problems with control constraints is presented. Closed spin systems are of fundamental importance in modern quantum technologies such as nuclear magnetic resonance (NMR) spectroscopy, quantum imaging, and quantum computing. These systems are modeled by the Liouville--von Neumann master (LvNM) equation describing the time evolution of the density operator representing the state of the system. A unifying setting is provided to discuss optimal-control and exact-controllability results. Different controllability results for the LvNM model are given, and necessary optimality conditions for the LvNM control problems are analyzed. Existence and regularity of optimal controls are proved. The computational framework is based on matrix-free reduced-Hessian semismooth Krylov--Newton schemes for solving optimal-control problems of the LvNM equation in a real vector space rotating-frame representation. A continuation technique is designed to solve closed spin exact-controllability problems that is based on the solution of an appropriately formulated optimal-control problem. These computational strategies are put into a rigorous theoretical framework, proving convergence to the solutions sought. Results of numerical experiments validate the theoretical results and demonstrate the computational ability of the proposed framework to solve closed quantum spin control problems.</dcterms:abstract> <dc:creator>Dirr, Gunther</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Ciaramella, Gabriele</dc:contributor> <dc:creator>Wachsmuth, Daniel</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Borzì, Alfio</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Wachsmuth, Daniel</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Borzì, Alfio</dc:creator> <dcterms:title>Newton Methods for the Optimal Control of Closed Quantum Spin Systems</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-02T13:52:48Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41217"/> </rdf:Description> </rdf:RDF>