Publikation:

Extension of Hilbert's 1888 Theorem to Even Symmetric Forms

Lade...
Vorschaubild

Dateien

Goel_0-263940.pdf
Goel_0-263940.pdfGröße: 619.62 KBDownloads: 1285

Datum

2014

Autor:innen

Goel, Charu

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We compare the cone of positive semidefinite (real) forms to its subcone of sum of squares of (real) forms under the additional assumption of symmetry on the given forms. The aim was to generalize a classical theorem of Hilbert from 1888, namely, a positive semidefinite form (psd) in n variables and of degree 2d is a sum of squares (sos) if and only if n=2 or d=1 or (n,2d)=(3,4); for symmetric and even symmetric forms respectively. As main results we construct explicitly psd not sos symmetric quartic forms in more than 4 variables, thereby completing the analogue of Hilbert's 1888 theorem for symmetric forms, which was asserted by Choi and Lam in 1976. Moreover, we construct psd not sos even symmetric octic forms in more than 4 variables and introduce a degree jumping principle to increase the degree of a psd not sos even symmetric form while simultaneously preserving the psd not sos even symmetric property. Finally using these constructions and techniques we present a version of Hilbert's 1888 theorem for even symmetric forms.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Real algebraic geometry, Positive polynomials, Sums of squares, Symmmetric forms, Even symmetric forms, Degree jumping principle

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GOEL, Charu, 2014. Extension of Hilbert's 1888 Theorem to Even Symmetric Forms [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Goel2014Exten-29352,
  year={2014},
  title={Extension of Hilbert's 1888 Theorem to Even Symmetric Forms},
  author={Goel, Charu},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29352">
    <dcterms:issued>2014</dcterms:issued>
    <dc:contributor>Goel, Charu</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29352"/>
    <dc:creator>Goel, Charu</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29352/3/Goel_0-263940.pdf"/>
    <dcterms:abstract xml:lang="eng">We compare the cone of positive semidefinite (real) forms to its subcone of sum of squares of (real) forms under the additional assumption of symmetry on the given forms. The aim was to generalize a classical theorem of Hilbert from 1888, namely, a positive semidefinite form (psd) in n variables and of degree 2d is a sum of squares (sos) if and only if n=2 or d=1 or (n,2d)=(3,4); for symmetric and even symmetric forms respectively. As main results we construct explicitly psd not sos symmetric quartic forms in more than 4 variables, thereby completing the analogue of Hilbert's 1888 theorem for symmetric forms, which was asserted by Choi and Lam in 1976. Moreover, we construct psd not sos even symmetric octic forms in more than 4 variables and introduce a degree jumping principle to increase the degree of a psd not sos even symmetric form while simultaneously preserving the psd not sos even symmetric property. Finally using these constructions and techniques we present a version of Hilbert's 1888 theorem for even symmetric forms.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29352/3/Goel_0-263940.pdf"/>
    <dcterms:title>Extension of Hilbert's 1888 Theorem to Even Symmetric Forms</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T15:25:08Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T15:25:08Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

August 1, 2014
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2014
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen