Bounds for the range of a complex polynomial over a rectangular region
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Computational and Applied Mathematics. Elsevier. 2021, 391, 113377. ISSN 0377-0427. eISSN 1879-1778. Available under: doi: 10.1016/j.cam.2020.113377
Zusammenfassung
Matrix methods for the computation of bounds for the range of a complex polynomial and its modulus over a rectangular region in the complex plane are presented. The approach relies on the expansion of the given polynomial into Bernstein polynomials. The results are extended to multivariate complex polynomials and rational functions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Complex interval, Complex polynomial, Enclosure of the range, Bernstein polynomial, Multivariate complex polynomia,l Multivariate rational function
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
TITI, Jihad, Jürgen GARLOFF, 2021. Bounds for the range of a complex polynomial over a rectangular region. In: Journal of Computational and Applied Mathematics. Elsevier. 2021, 391, 113377. ISSN 0377-0427. eISSN 1879-1778. Available under: doi: 10.1016/j.cam.2020.113377BibTex
@article{Titi2021Bound-53251, year={2021}, doi={10.1016/j.cam.2020.113377}, title={Bounds for the range of a complex polynomial over a rectangular region}, volume={391}, issn={0377-0427}, journal={Journal of Computational and Applied Mathematics}, author={Titi, Jihad and Garloff, Jürgen}, note={Bereits als Working Paper veröffentlicht in der Reihe Konstanzer Schriften in Mathematik ; 396 Article Number: 113377} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53251"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-24T13:41:40Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Garloff, Jürgen</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-24T13:41:40Z</dc:date> <dc:contributor>Titi, Jihad</dc:contributor> <dc:contributor>Garloff, Jürgen</dc:contributor> <dcterms:issued>2021</dcterms:issued> <dcterms:title>Bounds for the range of a complex polynomial over a rectangular region</dcterms:title> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53251"/> <dcterms:abstract xml:lang="eng">Matrix methods for the computation of bounds for the range of a complex polynomial and its modulus over a rectangular region in the complex plane are presented. The approach relies on the expansion of the given polynomial into Bernstein polynomials. The results are extended to multivariate complex polynomials and rational functions.</dcterms:abstract> <dc:creator>Titi, Jihad</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Bereits als Working Paper veröffentlicht in der Reihe Konstanzer Schriften in Mathematik ; 396
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja