Publikation: Scalable high-throughput microfluidic separation of magnetic microparticles
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Swiss National Science Foundation: 203203
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Surface-engineered magnetic microparticles are used in chemical and biomedical engineering due to their ease of synthesis, high surface-to-volume ratio, selective binding, and magnetic separation. To separate them from fluid suspensions, existing methods rely on the magnetic force introduced by the local magnetic field gradient. However, this strategy has poor scalability because the magnetic field gradient decreases rapidly as one moves away from the magnets. Here, we present a scalable high-throughput magnetic separation strategy using a rotating permanent magnet and two-dimensional arrays of micromagnets. Under a dynamic magnetic field, nickel micromagnets allow the surrounding magnetic microparticles to self-assemble into large clusters and effectively propel themselves through the flow. The collective speed of the microparticle swarm reaches about two orders of magnitude higher than the gradient-based separation method over a wide range of operating frequencies and distances from a rotating magnet.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GU, Hongri, Yonglin CHEN, Anton LÜDERS, Thibaud BERTRAND, Emre HANEDAN, Peter NIELABA, Clemens BECHINGER, Bradley J. NELSON, 2024. Scalable high-throughput microfluidic separation of magnetic microparticles. In: Device. Elsevier. 2024, 2(7), 100403. eISSN 2666-9986. Verfügbar unter: doi: 10.1016/j.device.2024.100403BibTex
@article{Gu2024-07-19Scala-70533, year={2024}, doi={10.1016/j.device.2024.100403}, title={Scalable high-throughput microfluidic separation of magnetic microparticles}, number={7}, volume={2}, journal={Device}, author={Gu, Hongri and Chen, Yonglin and Lüders, Anton and Bertrand, Thibaud and Hanedan, Emre and Nielaba, Peter and Bechinger, Clemens and Nelson, Bradley J.}, note={Article Number: 100403} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70533"> <dc:contributor>Chen, Yonglin</dc:contributor> <dc:contributor>Bertrand, Thibaud</dc:contributor> <dc:creator>Hanedan, Emre</dc:creator> <dc:contributor>Bechinger, Clemens</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:title>Scalable high-throughput microfluidic separation of magnetic microparticles</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Nielaba, Peter</dc:creator> <dc:contributor>Gu, Hongri</dc:contributor> <dc:language>eng</dc:language> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70533/1/Gu_2-kunrir7w0pwi1.pdf"/> <dcterms:abstract>Surface-engineered magnetic microparticles are used in chemical and biomedical engineering due to their ease of synthesis, high surface-to-volume ratio, selective binding, and magnetic separation. To separate them from fluid suspensions, existing methods rely on the magnetic force introduced by the local magnetic field gradient. However, this strategy has poor scalability because the magnetic field gradient decreases rapidly as one moves away from the magnets. Here, we present a scalable high-throughput magnetic separation strategy using a rotating permanent magnet and two-dimensional arrays of micromagnets. Under a dynamic magnetic field, nickel micromagnets allow the surrounding magnetic microparticles to self-assemble into large clusters and effectively propel themselves through the flow. The collective speed of the microparticle swarm reaches about two orders of magnitude higher than the gradient-based separation method over a wide range of operating frequencies and distances from a rotating magnet.</dcterms:abstract> <dc:contributor>Hanedan, Emre</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70533/1/Gu_2-kunrir7w0pwi1.pdf"/> <dc:creator>Lüders, Anton</dc:creator> <dc:creator>Bertrand, Thibaud</dc:creator> <dc:contributor>Lüders, Anton</dc:contributor> <dcterms:issued>2024-07-19</dcterms:issued> <dc:creator>Nelson, Bradley J.</dc:creator> <dc:contributor>Nelson, Bradley J.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-05T08:39:36Z</dc:date> <dc:contributor>Nielaba, Peter</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Chen, Yonglin</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70533"/> <dc:creator>Bechinger, Clemens</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-05T08:39:36Z</dcterms:available> <dc:creator>Gu, Hongri</dc:creator> </rdf:Description> </rdf:RDF>