Publikation:

A Boltzmann-type approach to the formation of wealth distribution curves

Lade...
Vorschaubild

Dateien

Boltzmann_duering.pdf
Boltzmann_duering.pdfGröße: 571.5 KBDownloads: 529

Datum

2008

Autor:innen

Düring, Bertram
Matthes, Daniel
Toscani, Giuseppe

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Kinetic market models have been proposed recently to account for the redistribution of wealth in simple market economies. These models allow to develop a qualitative theory, which is based on methods borrowed from the kinetic theory of rarefied gases. The aim of these notes is to present a unifying approach to the study of the evolution of wealth in the largetime regime. The considered models are divided into two classes: the first class is such that the society s mean wealth is conserved, while for models of the second class, the mean wealth grows or decreases exponentially in time. In both cases, it is possible to classify the most important feature of the steady (or self-similar, respectively) wealth distributions, namely the fatness of the Pareto tail. We shall also discuss the tails dynamical stability in terms of the model parameters. Our results are derived by means of a qualitative analysis of the associated homogeneous Boltzmann equations. The key tools are suitable metrics for probability measures, and a concise description of the evolution of moments. A recent extension to economies, in which different groups of agents interact, is presented in detail. We conclude with numerical experiments that confirm the theoretical predictions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Econophysics, Boltzmann equation, wealth and income distributions, Pareto distribution, mixtures

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DÜRING, Bertram, Daniel MATTHES, Giuseppe TOSCANI, 2008. A Boltzmann-type approach to the formation of wealth distribution curves
BibTex
@techreport{During2008Boltz-12245,
  year={2008},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={A Boltzmann-type approach to the formation of wealth distribution curves},
  number={2008/05},
  author={Düring, Bertram and Matthes, Daniel and Toscani, Giuseppe}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12245">
    <dc:contributor>Düring, Bertram</dc:contributor>
    <dcterms:abstract xml:lang="eng">Kinetic market models have been proposed recently to account for the redistribution of wealth in simple market economies. These models allow to develop a qualitative theory, which is based on methods borrowed from the kinetic theory of rarefied gases. The aim of these notes is to present a unifying approach to the study of the evolution of wealth in the largetime regime. The considered models are divided into two classes: the first class is such that the society s mean wealth is conserved, while for models of the second class, the mean wealth grows or decreases exponentially in time. In both cases, it is possible to classify the most important feature of the steady (or self-similar, respectively) wealth distributions, namely the fatness of the Pareto tail. We shall also discuss the tails  dynamical stability in terms of the model parameters. Our results are derived by means of a qualitative analysis of the associated homogeneous Boltzmann equations. The key tools are suitable metrics for probability measures, and a concise description of the evolution of moments. A recent extension to economies, in which different groups of agents interact, is presented in detail. We conclude with numerical experiments that confirm the theoretical predictions.</dcterms:abstract>
    <dc:creator>Düring, Bertram</dc:creator>
    <dc:language>eng</dc:language>
    <dc:format>application/pdf</dc:format>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12245/1/Boltzmann_duering.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:43:45Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:43:45Z</dc:date>
    <dc:contributor>Toscani, Giuseppe</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12245"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12245/1/Boltzmann_duering.pdf"/>
    <dcterms:issued>2008</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Matthes, Daniel</dc:contributor>
    <dc:creator>Matthes, Daniel</dc:creator>
    <dc:creator>Toscani, Giuseppe</dc:creator>
    <dcterms:title>A Boltzmann-type approach to the formation of wealth distribution curves</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen