Publikation:

Muscle Artifact Removal from Human Sleep EEG by Using Independent Component Analysis

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2008

Autor:innen

Atienza, Mercedes
Cantero, Jose L.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Annals of Biomedical Engineering. 2008, 36(3), pp. 467-475. ISSN 0090-6964. eISSN 1573-9686. Available under: doi: 10.1007/s10439-008-9442-y

Zusammenfassung

Muscle artifacts are typically associated with sleep arousals and awakenings in normal and pathological sleep, contaminating EEG recordings and distorting quantitative EEG results. Most EEG correction techniques focus on ocular artifacts but little research has been done on removing muscle activity from sleep EEG recordings. The present study was aimed at assessing the performance of four independent component analysis (ICA) algorithms (AMUSE, SOBI, Infomax, and JADE) to separate myogenic activity from EEG during sleep, in order to determine the optimal method. AMUSE, Infomax, and SOBI performed significantly better than JADE at eliminating muscle artifacts over temporal regions, but AMUSE was independent of the signal-to-noise ratio over non-temporal regions and markedly faster than the remaining algorithms. AMUSE was further successful at separating muscle artifacts from spontaneous EEG arousals when applied on a real case during different sleep stages. The low computational cost of AMUSE, and its excellent performance with EEG arousals from different sleep stages supports this ICA algorithm as a valid choice to minimize the influence of muscle artifacts on human sleep EEG recordings.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Muscle artifacts, Sleep, Arousals, Awakenings, EEG, Independent component analysis, Blind source separation techniques

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CRESPO-GARCÍA, Maité, Mercedes ATIENZA, Jose L. CANTERO, 2008. Muscle Artifact Removal from Human Sleep EEG by Using Independent Component Analysis. In: Annals of Biomedical Engineering. 2008, 36(3), pp. 467-475. ISSN 0090-6964. eISSN 1573-9686. Available under: doi: 10.1007/s10439-008-9442-y
BibTex
@article{CrespoGarcia2008Muscl-35024,
  year={2008},
  doi={10.1007/s10439-008-9442-y},
  title={Muscle Artifact Removal from Human Sleep EEG by Using Independent Component Analysis},
  number={3},
  volume={36},
  issn={0090-6964},
  journal={Annals of Biomedical Engineering},
  pages={467--475},
  author={Crespo-García, Maité and Atienza, Mercedes and Cantero, Jose L.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35024">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/35024"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-08-16T07:49:50Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Crespo-García, Maité</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:title>Muscle Artifact Removal from Human Sleep EEG by Using Independent Component Analysis</dcterms:title>
    <dc:creator>Cantero, Jose L.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-08-16T07:49:50Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Cantero, Jose L.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Muscle artifacts are typically associated with sleep arousals and awakenings in normal and pathological sleep, contaminating EEG recordings and distorting quantitative EEG results. Most EEG correction techniques focus on ocular artifacts but little research has been done on removing muscle activity from sleep EEG recordings. The present study was aimed at assessing the performance of four independent component analysis (ICA) algorithms (AMUSE, SOBI, Infomax, and JADE) to separate myogenic activity from EEG during sleep, in order to determine the optimal method. AMUSE, Infomax, and SOBI performed significantly better than JADE at eliminating muscle artifacts over temporal regions, but AMUSE was independent of the signal-to-noise ratio over non-temporal regions and markedly faster than the remaining algorithms. AMUSE was further successful at separating muscle artifacts from spontaneous EEG arousals when applied on a real case during different sleep stages. The low computational cost of AMUSE, and its excellent performance with EEG arousals from different sleep stages supports this ICA algorithm as a valid choice to minimize the influence of muscle artifacts on human sleep EEG recordings.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Atienza, Mercedes</dc:creator>
    <dc:contributor>Crespo-García, Maité</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Atienza, Mercedes</dc:contributor>
    <dcterms:issued>2008</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen