Publikation:

Planar Graph Drawing

Lade...
Vorschaubild

Dateien

martin_mader.pdf
martin_mader.pdfGröße: 1.31 MBDownloads: 632

Datum

2008

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This thesis covers three aspects in the field of graph analysis and drawing. Firstly, the depth-first-search based algorithm for finding triconnected components in general biconnected graphs is presented. This linear-time algorithm was originally published by Hopcroft and Tarjan [17], and corrected by Mutzel and Gutwenger [13]. Since the original paper is hard to understand, the algorithm is presented with illustrations to ease getting the vital ideas. Also, the crucial proposition is stated and proven in a way which is closer to the actual proceeding of the algorithm. Secondly, a simple linear-time algorithm for triangulating a biconnected planar graph is presented. Finally, a vertex-weighted variant of the so-called "shift-method" algorithm by de Fraysseix, Pach and Pollack [11] is introduced. The shift method is a linear-time algorithm to produce a straightline drawing of triangulated graphs on a grid with an area bound quadratic in the number of vertices of the graph. The original algorithm is modified to draw vertices as diamond shapes with area according to vertex weights. It is proven that the modified algorithm still produces a straight-line grid drawing of the graph in linear time with an area bound quadratic in the sum of vertex weights, and that edges do not cross the drawings of other vertices' representations.
The algorithm is presented within a framework to draw a special class of clustered graphs. The algorithm for finding triconnected components is implemented in JAVA for the yFiles graph drawing library [27]. The vertex-weighted shift method is implemented in JAVA for the visual analysis tool GEOMI [1].

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
020 Bibliotheks- und Informationswissenschaft

Schlagwörter

Graph Drawing

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MADER, Martin, 2008. Planar Graph Drawing [Master thesis]
BibTex
@mastersthesis{Mader2008Plana-5838,
  year={2008},
  title={Planar Graph Drawing},
  author={Mader, Martin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5838">
    <dcterms:abstract xml:lang="eng">This thesis covers three aspects in the field of graph analysis and drawing. Firstly, the depth-first-search based algorithm for finding triconnected components in general biconnected graphs is presented. This linear-time algorithm was originally published by Hopcroft and Tarjan [17], and corrected by Mutzel and Gutwenger [13]. Since the original paper is hard to understand, the algorithm is presented with illustrations to ease getting the vital ideas. Also, the crucial proposition is stated and proven in a way which is closer to the actual proceeding of the algorithm. Secondly, a simple linear-time algorithm for triangulating a biconnected planar graph is presented. Finally, a vertex-weighted variant of the so-called "shift-method" algorithm by de Fraysseix, Pach and Pollack [11] is introduced. The shift method is a linear-time algorithm to produce a straightline drawing of triangulated graphs on a grid with an area bound quadratic in the number of vertices of the graph. The original algorithm is modified to draw vertices as diamond shapes with area according to vertex weights. It is proven that the modified algorithm still produces a straight-line grid drawing of the graph in linear time with an area bound quadratic in the sum of vertex weights, and that edges do not cross the drawings of other vertices' representations.&lt;br /&gt;The algorithm is presented within a framework to draw a special class of clustered graphs. The algorithm for finding triconnected components is implemented in JAVA for the yFiles graph drawing library [27]. The vertex-weighted shift method is implemented in JAVA for the visual analysis tool GEOMI [1].</dcterms:abstract>
    <dc:creator>Mader, Martin</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:28Z</dc:date>
    <dcterms:title>Planar Graph Drawing</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2008</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:28Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5838"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:format>application/pdf</dc:format>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5838/1/martin_mader.pdf"/>
    <dc:contributor>Mader, Martin</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5838/1/martin_mader.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen