Publikation:

Modulation Equation and SPDEs on Unbounded Domains

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Blömker, Dirk
Schneider, Guido

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Communications in Mathematical Physics. Springer. 2019, 371(1), pp. 19-54. ISSN 0010-3616. eISSN 1432-0916. Available under: doi: 10.1007/s00220-019-03573-7

Zusammenfassung

We consider the approximation via modulation equations for nonlinear SPDEs on unbounded domains with additive space-time white noise. Close to a bifurcation an infinite band of eigenvalues changes stability, and we study the impact of small space–time white noise on the dynamics close to this bifurcation. As a first example we study the stochastic Swift–Hohenberg equation on the whole real line. Here, due to the weak regularity of solutions, the standard methods for modulation equations fail, and we need to develop new tools to treat the approximation. As an additional result, we sketch the proof for local existence and uniqueness of solutions for the stochastic Swift–Hohenberg and the complex Ginzburg Landau equations on the whole real line in weighted spaces that allow for unboundedness at infinity of solutions, which is natural for translation invariant noise like space-time white noise. We use energy estimates to show that solutions of the Ginzburg–Landau equation are Hölder continuous and have moments in those functions spaces. This gives just enough regularity to proceed with the error estimates of the approximation result.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BIANCHI, Luigi Amedeo, Dirk BLÖMKER, Guido SCHNEIDER, 2019. Modulation Equation and SPDEs on Unbounded Domains. In: Communications in Mathematical Physics. Springer. 2019, 371(1), pp. 19-54. ISSN 0010-3616. eISSN 1432-0916. Available under: doi: 10.1007/s00220-019-03573-7
BibTex
@article{Bianchi2019Modul-53027,
  year={2019},
  doi={10.1007/s00220-019-03573-7},
  title={Modulation Equation and SPDEs on Unbounded Domains},
  number={1},
  volume={371},
  issn={0010-3616},
  journal={Communications in Mathematical Physics},
  pages={19--54},
  author={Bianchi, Luigi Amedeo and Blömker, Dirk and Schneider, Guido}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53027">
    <dc:creator>Blömker, Dirk</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Schneider, Guido</dc:contributor>
    <dc:contributor>Bianchi, Luigi Amedeo</dc:contributor>
    <dc:creator>Schneider, Guido</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">We consider the approximation via modulation equations for nonlinear SPDEs on unbounded domains with additive space-time white noise. Close to a bifurcation an infinite band of eigenvalues changes stability, and we study the impact of small space–time white noise on the dynamics close to this bifurcation. As a first example we study the stochastic Swift–Hohenberg equation on the whole real line. Here, due to the weak regularity of solutions, the standard methods for modulation equations fail, and we need to develop new tools to treat the approximation. As an additional result, we sketch the proof for local existence and uniqueness of solutions for the stochastic Swift–Hohenberg and the complex Ginzburg Landau equations on the whole real line in weighted spaces that allow for unboundedness at infinity of solutions, which is natural for translation invariant noise like space-time white noise. We use energy estimates to show that solutions of the Ginzburg–Landau equation are Hölder continuous and have moments in those functions spaces. This gives just enough regularity to proceed with the error estimates of the approximation result.</dcterms:abstract>
    <dcterms:title>Modulation Equation and SPDEs on Unbounded Domains</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-26T13:21:05Z</dc:date>
    <dc:creator>Bianchi, Luigi Amedeo</dc:creator>
    <dc:contributor>Blömker, Dirk</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-26T13:21:05Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53027"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen