Publikation:

Trace-positive polynomials and the quartic tracial moment problem

Lade...
Vorschaubild

Dateien

269.pdf
269.pdfGröße: 355.7 KBDownloads: 306

Datum

2010

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

The tracial analog of Hilbert's classical result on positive binary quartics is presented: a trace-positive bivariate noncommutative polynomial of degree at most four is a sum of hermitian squares and commutators.
This is applied via duality to investigate the truncated tracial moment problem: a sequence of real numbers indexed by words of degree four in two noncommuting variables with values invariant under cyclic permutations of the indexes, can be represented with tracial moments of matrices if the corresponding moment matrix is positive definite. Understanding trace-positive polynomials and the tracial moment problem is one of the approaches to Connes' embedding conjecture.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

nichtkommutative Polynome, Spur, Summen hermitescher Quadrate, noncommutative polynomials, trace, sums of hermitian squares, moment problem

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BURGDORF, Sabine, Igor KLEP, 2010. Trace-positive polynomials and the quartic tracial moment problem
BibTex
@techreport{Burgdorf2010Trace-655,
  year={2010},
  series={Konstanzer Schriften in Mathematik},
  title={Trace-positive polynomials and the quartic tracial moment problem},
  number={269},
  author={Burgdorf, Sabine and Klep, Igor}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/655">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/655/1/269.pdf"/>
    <dc:creator>Burgdorf, Sabine</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/655"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/655/1/269.pdf"/>
    <dcterms:abstract xml:lang="eng">The tracial analog of Hilbert's classical result on positive binary quartics is presented: a trace-positive bivariate noncommutative polynomial of degree at most four is a sum of hermitian squares and commutators.&lt;br /&gt;This is applied via duality to investigate the truncated tracial moment problem: a sequence of real numbers indexed by words of degree four in two noncommuting variables with values invariant under cyclic permutations of the indexes, can be represented with tracial moments of matrices if the corresponding moment matrix is positive definite. Understanding trace-positive polynomials and the tracial moment problem is one of the approaches to Connes' embedding conjecture.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Trace-positive polynomials and the quartic tracial moment problem</dcterms:title>
    <dc:format>application/pdf</dc:format>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2010</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Burgdorf, Sabine</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Klep, Igor</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:24Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:24Z</dc:date>
    <dc:contributor>Klep, Igor</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen