Publikation: Sums of squares of polynomials with rational coefficients
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of the European Mathematical Society : JEMS. 2016, 18(7), pp. 1495-1513. ISSN 1435-9855. eISSN 1435-9863. Available under: doi: 10.4171/JEMS/620
Zusammenfassung
We construct families of explicit (homogeneous) polynomials f over Q that are sums of squares of polynomials over R, but not over Q. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that our construction yields all possible examples. We also study representations of the f we construct as sums of squares of rational functions over Q, proving lower bounds for the possible degrees of denominators. For deg(f)=4, or for ternary sextics, we obtain explicit such representations with the minimum degree of the denominators.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SCHEIDERER, Claus, 2016. Sums of squares of polynomials with rational coefficients. In: Journal of the European Mathematical Society : JEMS. 2016, 18(7), pp. 1495-1513. ISSN 1435-9855. eISSN 1435-9863. Available under: doi: 10.4171/JEMS/620BibTex
@article{Scheiderer2016squar-34851, year={2016}, doi={10.4171/JEMS/620}, title={Sums of squares of polynomials with rational coefficients}, number={7}, volume={18}, issn={1435-9855}, journal={Journal of the European Mathematical Society : JEMS}, pages={1495--1513}, author={Scheiderer, Claus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/34851"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/34851"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-21T12:54:29Z</dc:date> <dcterms:issued>2016</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-21T12:54:29Z</dcterms:available> <dc:contributor>Scheiderer, Claus</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:creator>Scheiderer, Claus</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">We construct families of explicit (homogeneous) polynomials f over Q that are sums of squares of polynomials over R, but not over Q. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that our construction yields all possible examples. We also study representations of the f we construct as sums of squares of rational functions over Q, proving lower bounds for the possible degrees of denominators. For deg(f)=4, or for ternary sextics, we obtain explicit such representations with the minimum degree of the denominators.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Sums of squares of polynomials with rational coefficients</dcterms:title> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja