Publikation:

Detecting Ransomware

Lade...
Vorschaubild

Dateien

Held_2-jp86thc6u67s4.pdf
Held_2-jp86thc6u67s4.pdfGröße: 913.78 KBDownloads: 2132

Datum

2018

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Ransomware attacks -- in contrast to other cyber attacks -- must not be detected and especially not blocked or recovered on first sight. This relaxation is supported by the rareness of ransomware attacks. Certainly, the uprising of ransomware families, which are able to circumvent the detection mechanism, integrated into the local machine, prevents the approaches from taking advantage of the relaxation. Justified by the attack isolation, the move to the personal cloud storage is the reasonable way to gain as much as possible of the relaxation, the perfect protection of false positives and the simplified recovery. In this paper we investigate different ransomware families -- with the help of real-world malware samples -- to formulate a taxonomy of requirements for operation classes and indicator categories. Additionally, we propose an approach which moves the ransomware detection from the local system to the personal cloud storage. Utilizing the file versioning of the cloud storage, we can delay the recovery and reliably perform our content-based, metadata-based and behaviour-based analysis in combination with the `guilt by association' assumption to improve the false positive rate. The new burden for the end-user is the responsibility of supervising the recovery; but the responsibilities are supported by the simplified recovery -- offering the classification information -- allowing the user to make a qualified decision and release the user from fighting with false classified operations. In summary, this leads to an improvement in the aspects of detection quality, usability and reliable recovery.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

ransomware, security, malware, cloud-storage

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HELD, Matthias, 2018. Detecting Ransomware [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Held2018Detec-43396,
  year={2018},
  title={Detecting Ransomware},
  address={Konstanz},
  school={Universität Konstanz},
  author={Held, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43396">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dc:contributor>Held, Matthias</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43396"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43396/3/Held_2-jp86thc6u67s4.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-28T06:16:52Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Ransomware attacks -- in contrast to other cyber attacks -- must not be detected and especially not blocked or recovered on first sight. This relaxation is supported by the rareness of ransomware attacks. Certainly, the uprising of ransomware families, which are able to circumvent the detection mechanism, integrated into the local machine, prevents the approaches from taking advantage of the relaxation. Justified by the attack isolation, the move to the personal cloud storage is the reasonable way to gain as much as possible of the relaxation, the perfect protection of false positives and the simplified recovery. In this paper we investigate different ransomware families -- with the help of real-world malware samples -- to formulate a taxonomy of requirements for operation classes and indicator categories. Additionally, we propose an approach which moves the ransomware detection from the local system to the personal cloud storage. Utilizing the file versioning of the cloud storage, we can delay the recovery and reliably perform our content-based, metadata-based and behaviour-based analysis in combination with the `guilt by association' assumption to improve the false positive rate. The new burden for the end-user is the responsibility of supervising the recovery; but the responsibilities are supported by the simplified recovery -- offering the classification information -- allowing the user to make a qualified decision and release the user from fighting with false classified operations. In summary, this leads to an improvement in the aspects of detection quality, usability and reliable recovery.</dcterms:abstract>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-28T06:16:52Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Detecting Ransomware</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Held, Matthias</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43396/3/Held_2-jp86thc6u67s4.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2018
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen