Publikation:

The Riemann Problem for the Multidimensional Isentropic System of Gas Dynamics is Ill-Posed if It Contains a Shock

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Klingenberg, Christian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Archive for Rational Mechanics and Analysis. Springer. 2018, 227(3), S. 967-994. ISSN 0003-9527. eISSN 1432-0673. Verfügbar unter: doi: 10.1007/s00205-017-1179-z

Zusammenfassung

In this paper we consider the isentropic compressible Euler equations in two space dimensions together with particular initial data. This data consists of two constant states, where one state lies in the lower and the other state in the upper half plane. The aim is to investigate whether there exists a unique entropy solution or if the convex integration method produces infinitely many entropy solutions. For some initial states this question has been answered by Feireisl and Kreml (J Hyperbolic Differ Equ 12(3):489–499, 2015), and also Chen and Chen (J Hyperbolic Differ Equ 4(1):105–122, 2007), where there exists a unique entropy solution. For other initial states Chiodaroli and Kreml (Arch Ration Mech Anal 214(3):1019–1049, 2014) and Chiodaroli et al. (Commun Pure Appl Math 68(7):1157–1190, 2015), showed that there are infinitely many entropy solutions. For still other initial states the question on uniqueness remained open and this will be the content of this paper. This paper can be seen as a completion of the aforementioned papers by showing that the solution is non-unique in all cases (except if the solution is smooth).

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MARKFELDER, Simon, Christian KLINGENBERG, 2018. The Riemann Problem for the Multidimensional Isentropic System of Gas Dynamics is Ill-Posed if It Contains a Shock. In: Archive for Rational Mechanics and Analysis. Springer. 2018, 227(3), S. 967-994. ISSN 0003-9527. eISSN 1432-0673. Verfügbar unter: doi: 10.1007/s00205-017-1179-z
BibTex
@article{Markfelder2018-03Riema-71567,
  year={2018},
  doi={10.1007/s00205-017-1179-z},
  title={The Riemann Problem for the Multidimensional Isentropic System of Gas Dynamics is Ill-Posed if It Contains a Shock},
  number={3},
  volume={227},
  issn={0003-9527},
  journal={Archive for Rational Mechanics and Analysis},
  pages={967--994},
  author={Markfelder, Simon and Klingenberg, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71567">
    <dc:contributor>Markfelder, Simon</dc:contributor>
    <dcterms:title>The Riemann Problem for the Multidimensional Isentropic System of Gas Dynamics is Ill-Posed if It Contains a Shock</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-04T11:16:10Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Klingenberg, Christian</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71567"/>
    <dc:creator>Klingenberg, Christian</dc:creator>
    <dcterms:issued>2018-03</dcterms:issued>
    <dcterms:abstract>In this paper we consider the isentropic compressible Euler equations in two space dimensions together with particular initial data. This data consists of two constant states, where one state lies in the lower and the other state in the upper half plane. The aim is to investigate whether there exists a unique entropy solution or if the convex integration method produces infinitely many entropy solutions. For some initial states this question has been answered by Feireisl and Kreml (J Hyperbolic Differ Equ 12(3):489–499, 2015), and also Chen and Chen (J Hyperbolic Differ Equ 4(1):105–122, 2007), where there exists a unique entropy solution. For other initial states Chiodaroli and Kreml (Arch Ration Mech Anal 214(3):1019–1049, 2014) and Chiodaroli et al. (Commun Pure Appl Math 68(7):1157–1190, 2015), showed that there are infinitely many entropy solutions. For still other initial states the question on uniqueness remained open and this will be the content of this paper. This paper can be seen as a completion of the aforementioned papers by showing that the solution is non-unique in all cases (except if the solution is smooth).</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-04T11:16:10Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Markfelder, Simon</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen