Publikation: The Riemann Problem for the Multidimensional Isentropic System of Gas Dynamics is Ill-Posed if It Contains a Shock
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we consider the isentropic compressible Euler equations in two space dimensions together with particular initial data. This data consists of two constant states, where one state lies in the lower and the other state in the upper half plane. The aim is to investigate whether there exists a unique entropy solution or if the convex integration method produces infinitely many entropy solutions. For some initial states this question has been answered by Feireisl and Kreml (J Hyperbolic Differ Equ 12(3):489–499, 2015), and also Chen and Chen (J Hyperbolic Differ Equ 4(1):105–122, 2007), where there exists a unique entropy solution. For other initial states Chiodaroli and Kreml (Arch Ration Mech Anal 214(3):1019–1049, 2014) and Chiodaroli et al. (Commun Pure Appl Math 68(7):1157–1190, 2015), showed that there are infinitely many entropy solutions. For still other initial states the question on uniqueness remained open and this will be the content of this paper. This paper can be seen as a completion of the aforementioned papers by showing that the solution is non-unique in all cases (except if the solution is smooth).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MARKFELDER, Simon, Christian KLINGENBERG, 2018. The Riemann Problem for the Multidimensional Isentropic System of Gas Dynamics is Ill-Posed if It Contains a Shock. In: Archive for Rational Mechanics and Analysis. Springer. 2018, 227(3), S. 967-994. ISSN 0003-9527. eISSN 1432-0673. Verfügbar unter: doi: 10.1007/s00205-017-1179-zBibTex
@article{Markfelder2018-03Riema-71567, year={2018}, doi={10.1007/s00205-017-1179-z}, title={The Riemann Problem for the Multidimensional Isentropic System of Gas Dynamics is Ill-Posed if It Contains a Shock}, number={3}, volume={227}, issn={0003-9527}, journal={Archive for Rational Mechanics and Analysis}, pages={967--994}, author={Markfelder, Simon and Klingenberg, Christian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71567"> <dc:contributor>Markfelder, Simon</dc:contributor> <dcterms:title>The Riemann Problem for the Multidimensional Isentropic System of Gas Dynamics is Ill-Posed if It Contains a Shock</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-04T11:16:10Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Klingenberg, Christian</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71567"/> <dc:creator>Klingenberg, Christian</dc:creator> <dcterms:issued>2018-03</dcterms:issued> <dcterms:abstract>In this paper we consider the isentropic compressible Euler equations in two space dimensions together with particular initial data. This data consists of two constant states, where one state lies in the lower and the other state in the upper half plane. The aim is to investigate whether there exists a unique entropy solution or if the convex integration method produces infinitely many entropy solutions. For some initial states this question has been answered by Feireisl and Kreml (J Hyperbolic Differ Equ 12(3):489–499, 2015), and also Chen and Chen (J Hyperbolic Differ Equ 4(1):105–122, 2007), where there exists a unique entropy solution. For other initial states Chiodaroli and Kreml (Arch Ration Mech Anal 214(3):1019–1049, 2014) and Chiodaroli et al. (Commun Pure Appl Math 68(7):1157–1190, 2015), showed that there are infinitely many entropy solutions. For still other initial states the question on uniqueness remained open and this will be the content of this paper. This paper can be seen as a completion of the aforementioned papers by showing that the solution is non-unique in all cases (except if the solution is smooth).</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-04T11:16:10Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Markfelder, Simon</dc:creator> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>