Generalized eigenvalue methods for Gaussian quadrature rules

Lade...
Vorschaubild
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Annales Henri Lebesgue ; 3 (2020). - S. 1327-1341. - École Normale Supérieure de Rennes (ENS Rennes). - eISSN 2644-9463
Zusammenfassung
A quadrature rule μ of a measure on the real line represents a conic combination of finitely many evaluations at points, called nodes, that agrees with integration against for all polynomials up to some fixed degree. In this paper, we present a bivariate polynomial whose roots parametrize the nodes of minimal quadrature rules for measures on the real line. We give two symmetric determinantal formulas for this polynomial, which translate the problem of finding the nodes to solving a generalized eigenvalue problem.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
quadrature, Gaussian quadrature, plane curves
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690BLEKHERMAN, Grigoriy, Mario KUMMER, Cordian RIENER, Markus SCHWEIGHOFER, Cynthia VINZANT, 2020. Generalized eigenvalue methods for Gaussian quadrature rules. In: Annales Henri Lebesgue. École Normale Supérieure de Rennes (ENS Rennes). 3, pp. 1327-1341. eISSN 2644-9463. Available under: doi: 10.5802/ahl.62
BibTex
@article{Blekherman2020Gener-55989,
  year={2020},
  doi={10.5802/ahl.62},
  title={Generalized eigenvalue methods for Gaussian quadrature rules},
  volume={3},
  journal={Annales Henri Lebesgue},
  pages={1327--1341},
  author={Blekherman, Grigoriy and Kummer, Mario and Riener, Cordian and Schweighofer, Markus and Vinzant, Cynthia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55989">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55989/1/Blekherman_2-jmsq051s3s3b5.pdf"/>
    <dcterms:abstract xml:lang="eng">A quadrature rule μ of a measure  on the real line represents a conic combination of finitely many evaluations at points, called nodes, that agrees with integration against for all polynomials up to some fixed degree. In this paper, we present a bivariate polynomial whose roots parametrize the nodes of minimal quadrature rules for measures on the real line. We give two symmetric determinantal formulas for this polynomial, which translate the problem of finding the nodes to solving a generalized eigenvalue problem.</dcterms:abstract>
    <dc:creator>Blekherman, Grigoriy</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Schweighofer, Markus</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Generalized eigenvalue methods for Gaussian quadrature rules</dcterms:title>
    <dc:creator>Vinzant, Cynthia</dc:creator>
    <dc:creator>Kummer, Mario</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55989/1/Blekherman_2-jmsq051s3s3b5.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-22T11:47:42Z</dc:date>
    <dc:contributor>Riener, Cordian</dc:contributor>
    <dc:contributor>Kummer, Mario</dc:contributor>
    <dc:contributor>Vinzant, Cynthia</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Blekherman, Grigoriy</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Schweighofer, Markus</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55989"/>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-22T11:47:42Z</dcterms:available>
    <dc:creator>Riener, Cordian</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja