Publikation:

Generalized eigenvalue methods for Gaussian quadrature rules

Lade...
Vorschaubild

Dateien

Blekherman_2-jmsq051s3s3b5.pdf
Blekherman_2-jmsq051s3s3b5.pdfGröße: 653.14 KBDownloads: 136

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Annales Henri Lebesgue. École Normale Supérieure de Rennes (ENS Rennes). 2020, 3, pp. 1327-1341. eISSN 2644-9463. Available under: doi: 10.5802/ahl.62

Zusammenfassung

A quadrature rule μ of a measure on the real line represents a conic combination of finitely many evaluations at points, called nodes, that agrees with integration against for all polynomials up to some fixed degree. In this paper, we present a bivariate polynomial whose roots parametrize the nodes of minimal quadrature rules for measures on the real line. We give two symmetric determinantal formulas for this polynomial, which translate the problem of finding the nodes to solving a generalized eigenvalue problem.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

quadrature, Gaussian quadrature, plane curves

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BLEKHERMAN, Grigoriy, Mario KUMMER, Cordian RIENER, Markus SCHWEIGHOFER, Cynthia VINZANT, 2020. Generalized eigenvalue methods for Gaussian quadrature rules. In: Annales Henri Lebesgue. École Normale Supérieure de Rennes (ENS Rennes). 2020, 3, pp. 1327-1341. eISSN 2644-9463. Available under: doi: 10.5802/ahl.62
BibTex
@article{Blekherman2020Gener-55989,
  year={2020},
  doi={10.5802/ahl.62},
  title={Generalized eigenvalue methods for Gaussian quadrature rules},
  volume={3},
  journal={Annales Henri Lebesgue},
  pages={1327--1341},
  author={Blekherman, Grigoriy and Kummer, Mario and Riener, Cordian and Schweighofer, Markus and Vinzant, Cynthia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55989">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55989/1/Blekherman_2-jmsq051s3s3b5.pdf"/>
    <dcterms:abstract xml:lang="eng">A quadrature rule μ of a measure  on the real line represents a conic combination of finitely many evaluations at points, called nodes, that agrees with integration against for all polynomials up to some fixed degree. In this paper, we present a bivariate polynomial whose roots parametrize the nodes of minimal quadrature rules for measures on the real line. We give two symmetric determinantal formulas for this polynomial, which translate the problem of finding the nodes to solving a generalized eigenvalue problem.</dcterms:abstract>
    <dc:creator>Blekherman, Grigoriy</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Schweighofer, Markus</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Generalized eigenvalue methods for Gaussian quadrature rules</dcterms:title>
    <dc:creator>Vinzant, Cynthia</dc:creator>
    <dc:creator>Kummer, Mario</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55989/1/Blekherman_2-jmsq051s3s3b5.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-22T11:47:42Z</dc:date>
    <dc:contributor>Riener, Cordian</dc:contributor>
    <dc:contributor>Kummer, Mario</dc:contributor>
    <dc:contributor>Vinzant, Cynthia</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Blekherman, Grigoriy</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Schweighofer, Markus</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55989"/>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-22T11:47:42Z</dcterms:available>
    <dc:creator>Riener, Cordian</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen