Publikation: Algebraic boundaries of SO(2)-orbitopes
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2013
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Discrete & Computational Geometry. 2013, 50(1), pp. 219-235. ISSN 0179-5376. eISSN 1432-0444. Available under: doi: 10.1007/s00454-013-9501-5
Zusammenfassung
Let X⊂A2r be a real curve embedded into an even-dimensional affine space. We characterise when the r th secant variety to X is an irreducible component of the algebraic boundary of the convex hull of the real points X(R) of X. This fact is then applied to 4 -dimensional SO(2) -orbitopes and to the so called Barvinok–Novik orbitopes to study when they are basic closed semi-algebraic sets. In the case of 4 -dimensional SO(2) -orbitopes, we find all irreducible components of their algebraic boundary.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SINN, Rainer, 2013. Algebraic boundaries of SO(2)-orbitopes. In: Discrete & Computational Geometry. 2013, 50(1), pp. 219-235. ISSN 0179-5376. eISSN 1432-0444. Available under: doi: 10.1007/s00454-013-9501-5BibTex
@article{Sinn2013Algeb-26409, year={2013}, doi={10.1007/s00454-013-9501-5}, title={Algebraic boundaries of SO(2)-orbitopes}, number={1}, volume={50}, issn={0179-5376}, journal={Discrete & Computational Geometry}, pages={219--235}, author={Sinn, Rainer} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26409"> <dc:contributor>Sinn, Rainer</dc:contributor> <dcterms:abstract xml:lang="eng">Let X⊂A<sup>2r</sup> be a real curve embedded into an even-dimensional affine space. We characterise when the r th secant variety to X is an irreducible component of the algebraic boundary of the convex hull of the real points X(R) of X. This fact is then applied to 4 -dimensional SO(2) -orbitopes and to the so called Barvinok–Novik orbitopes to study when they are basic closed semi-algebraic sets. In the case of 4 -dimensional SO(2) -orbitopes, we find all irreducible components of their algebraic boundary.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-18T13:52:16Z</dc:date> <dc:creator>Sinn, Rainer</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-18T13:52:16Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26409"/> <dcterms:issued>2013</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>Discrete & Computational Geometry ; 50 (2013), 1. - S. 219-235</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:title>Algebraic boundaries of SO(2)-orbitopes</dcterms:title> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein