Publikation:

Entangling logical qubits with lattice surgery

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Autor:innen

Erhard, Alexander
Poulsen Nautrup, Hendrik
Meth, Michael
Postler, Lukas
Stricker, Roman
Stadler, Martin
Negnevitsky, Vlad
Friis, Nicolai
Monz, Thomas
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nature. Springer Nature. 2021, 589(7841), pp. 220-224. ISSN 0028-0836. eISSN 1476-4687. Available under: doi: 10.1038/s41586-020-03079-6

Zusammenfassung

The development of quantum computing architectures from early designs and current noisy devices to fully fledged quantum computers hinges on achieving fault tolerance using quantum error correction1,2,3,4. However, these correction capabilities come with an overhead for performing the necessary fault-tolerant logical operations on logical qubits (qubits that are encoded in ensembles of physical qubits and protected by error-correction codes)5,6,7,8. One of the most resource-efficient ways to implement logical operations is lattice surgery9,10,11, where groups of physical qubits, arranged on lattices, can be merged and split to realize entangling gates and teleport logical information. Here we report the experimental realization of lattice surgery between two qubits protected via a topological error-correction code in a ten-qubit ion-trap quantum information processor. In this system, we can carry out the necessary quantum non-demolition measurements through a series of local and entangling gates, as well as measurements on auxiliary qubits. In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation between them. The demonstration of these operations—fundamental building blocks for quantum computation—through lattice surgery represents a step towards the efficient realization of fault-tolerant quantum computation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ERHARD, Alexander, Hendrik POULSEN NAUTRUP, Michael METH, Lukas POSTLER, Roman STRICKER, Martin STADLER, Vlad NEGNEVITSKY, Hans J. BRIEGEL, Nicolai FRIIS, Thomas MONZ, 2021. Entangling logical qubits with lattice surgery. In: Nature. Springer Nature. 2021, 589(7841), pp. 220-224. ISSN 0028-0836. eISSN 1476-4687. Available under: doi: 10.1038/s41586-020-03079-6
BibTex
@article{Erhard2021Entan-52760,
  year={2021},
  doi={10.1038/s41586-020-03079-6},
  title={Entangling logical qubits with lattice surgery},
  number={7841},
  volume={589},
  issn={0028-0836},
  journal={Nature},
  pages={220--224},
  author={Erhard, Alexander and Poulsen Nautrup, Hendrik and Meth, Michael and Postler, Lukas and Stricker, Roman and Stadler, Martin and Negnevitsky, Vlad and Briegel, Hans J. and Friis, Nicolai and Monz, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52760">
    <dc:contributor>Poulsen Nautrup, Hendrik</dc:contributor>
    <dc:creator>Friis, Nicolai</dc:creator>
    <dc:creator>Stricker, Roman</dc:creator>
    <dc:contributor>Friis, Nicolai</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Stadler, Martin</dc:creator>
    <dcterms:title>Entangling logical qubits with lattice surgery</dcterms:title>
    <dc:creator>Poulsen Nautrup, Hendrik</dc:creator>
    <dc:creator>Postler, Lukas</dc:creator>
    <dc:creator>Negnevitsky, Vlad</dc:creator>
    <dc:contributor>Postler, Lukas</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-09T07:53:54Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-09T07:53:54Z</dc:date>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:creator>Monz, Thomas</dc:creator>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Monz, Thomas</dc:contributor>
    <dc:contributor>Meth, Michael</dc:contributor>
    <dc:contributor>Stricker, Roman</dc:contributor>
    <dc:contributor>Briegel, Hans J.</dc:contributor>
    <dcterms:abstract xml:lang="eng">The development of quantum computing architectures from early designs and current noisy devices to fully fledged quantum computers hinges on achieving fault tolerance using quantum error correction1,2,3,4. However, these correction capabilities come with an overhead for performing the necessary fault-tolerant logical operations on logical qubits (qubits that are encoded in ensembles of physical qubits and protected by error-correction codes)5,6,7,8. One of the most resource-efficient ways to implement logical operations is lattice surgery9,10,11, where groups of physical qubits, arranged on lattices, can be merged and split to realize entangling gates and teleport logical information. Here we report the experimental realization of lattice surgery between two qubits protected via a topological error-correction code in a ten-qubit ion-trap quantum information processor. In this system, we can carry out the necessary quantum non-demolition measurements through a series of local and entangling gates, as well as measurements on auxiliary qubits. In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation between them. The demonstration of these operations—fundamental building blocks for quantum computation—through lattice surgery represents a step towards the efficient realization of fault-tolerant quantum computation.</dcterms:abstract>
    <dc:creator>Briegel, Hans J.</dc:creator>
    <dc:contributor>Negnevitsky, Vlad</dc:contributor>
    <dc:contributor>Stadler, Martin</dc:contributor>
    <dc:creator>Erhard, Alexander</dc:creator>
    <dc:contributor>Erhard, Alexander</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52760"/>
    <dc:creator>Meth, Michael</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen