Publikation:

Input Features' Impact on Fuzzy Decision Processes

Lade...
Vorschaubild

Dateien

SiBe00_infogain_smcb.pdf
SiBe00_infogain_smcb.pdfGröße: 296.41 KBDownloads: 575

Datum

2000

Autor:innen

Silipo, Rosaria

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics). 2000, 30(6), pp. 821-834. ISSN 1083-4419. Available under: doi: 10.1109/3477.891144

Zusammenfassung

Many real-world applications have very high dimensionality^and require very complex decision borders. In this case, the number of fuzzy rules can proliferate, and the easy interpretability of fuzzy models can progressively disappear. An important part of the model interpretation lies on the evaluation of the effectiveness of the input features on the decision process. In this paper, we present a method that quantifies the discriminative power of the input features in a fuzzy model. The separability among all the rules of the fuzzy model produces a measure of the information available in the system. Such measure of information is calculated to characterize the system before and after each input feature is used for classification. The resulting information gain quantifies the discriminative power of that input feature. The comparison among the information gains of the different input features can yield better insights into the selected fuzzy classification strategy, even for very high-dimensional cases, and can lead to a possible reduction of the input space dimension.Several artificial and real-world data analysis scenarios are reported as examples in order to illustrate the characteristics and potentialities of the proposed method.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Discriminitive power, feature importance, fuzzy models, information gain

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SILIPO, Rosaria, Michael R. BERTHOLD, 2000. Input Features' Impact on Fuzzy Decision Processes. In: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics). 2000, 30(6), pp. 821-834. ISSN 1083-4419. Available under: doi: 10.1109/3477.891144
BibTex
@article{Silipo2000Input-5782,
  year={2000},
  doi={10.1109/3477.891144},
  title={Input Features' Impact on Fuzzy Decision Processes},
  number={6},
  volume={30},
  issn={1083-4419},
  journal={IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)},
  pages={821--834},
  author={Silipo, Rosaria and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5782">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:04Z</dc:date>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5782/1/SiBe00_infogain_smcb.pdf"/>
    <dcterms:title>Input Features' Impact on Fuzzy Decision Processes</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2000</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5782"/>
    <dcterms:abstract xml:lang="eng">Many real-world applications have very high dimensionality^and require very complex decision borders. In this case, the number of fuzzy rules can proliferate, and the easy interpretability of fuzzy models can progressively disappear. An important part of the model interpretation lies on the evaluation of the effectiveness of the input features on the decision process. In this paper, we present a method that quantifies the discriminative power of the input features in a fuzzy model. The separability among all the rules of the fuzzy model produces a measure of the information available in the system. Such measure of information is calculated to characterize the system before and after each input feature is used for classification. The resulting information gain quantifies the discriminative power of that input feature. The comparison among the information gains of the different input features can yield better insights into the selected fuzzy classification strategy, even for very high-dimensional cases, and can lead to a possible reduction of the input space dimension.Several artificial and real-world data analysis scenarios are reported as examples in order to illustrate the characteristics and potentialities of the proposed method.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5782/1/SiBe00_infogain_smcb.pdf"/>
    <dcterms:bibliographicCitation>First publ. in: IEEE Transactions on Systems, Man and Cybernetics : B 30 (2000), 6,  pp. 821 - 834</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:creator>Silipo, Rosaria</dc:creator>
    <dc:format>application/pdf</dc:format>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:04Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Silipo, Rosaria</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen