Publikation: Separation and duality in locally L0-convex modules
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2009
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Functional Analysis. 2009, 256(12), pp. 3996-4029. ISSN 0022-1236. eISSN 1096-0783. Available under: doi: 10.1016/j.jfa.2008.11.015
Zusammenfassung
Motivated by financial applications, we study convex analysis for modules over the ordered ring L0 of random variables. We establish a module analogue of locally convex vector spaces, namely locally L0-convex modules. In this context, we prove hyperplane separation theorems. We investigate continuity, subdifferentiability and dual representations of Fenchel–Moreau type for L0-convex functions from L0-modules into L0. Several examples and applications are given.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
FILIPOVIĆ, Damir, Michael KUPPER, Nicolas VOGELPOTH, 2009. Separation and duality in locally L0-convex modules. In: Journal of Functional Analysis. 2009, 256(12), pp. 3996-4029. ISSN 0022-1236. eISSN 1096-0783. Available under: doi: 10.1016/j.jfa.2008.11.015BibTex
@article{Filipovic2009-06Separ-40942, year={2009}, doi={10.1016/j.jfa.2008.11.015}, title={Separation and duality in locally L<sup>0</sup>-convex modules}, number={12}, volume={256}, issn={0022-1236}, journal={Journal of Functional Analysis}, pages={3996--4029}, author={Filipović, Damir and Kupper, Michael and Vogelpoth, Nicolas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40942"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Vogelpoth, Nicolas</dc:contributor> <dc:contributor>Filipović, Damir</dc:contributor> <dcterms:abstract xml:lang="eng">Motivated by financial applications, we study convex analysis for modules over the ordered ring L<sup>0</sup> of random variables. We establish a module analogue of locally convex vector spaces, namely locally L<sup>0</sup>-convex modules. In this context, we prove hyperplane separation theorems. We investigate continuity, subdifferentiability and dual representations of Fenchel–Moreau type for L<sup>0</sup>-convex functions from L<sup>0</sup>-modules into L<sup>0</sup>. Several examples and applications are given.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40942"/> <dc:creator>Filipović, Damir</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Separation and duality in locally L<sup>0</sup>-convex modules</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-14T09:04:48Z</dc:date> <dc:creator>Kupper, Michael</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Vogelpoth, Nicolas</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-14T09:04:48Z</dcterms:available> <dcterms:issued>2009-06</dcterms:issued> <dc:contributor>Kupper, Michael</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein