Publikation:

Finite Sample Properties of One-step, Two-step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation

Lade...
Vorschaubild

Dateien

418_1.pdf
418_1.pdfGröße: 110.54 KBDownloads: 194

Datum

2000

Autor:innen

Inkmann, Joachim

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This paper compares conventional GMM estimators to empirical likelihood based GMM estimators which employ a semiparametric efficient estimate of the unknown distribution function of the data. One-step, two-step and bootstrap empirical likelihood and conventional GMM estimators are considered which are efficient for a given set of moment conditions. The estimators are subject to a Monte Carlo investigation using a specification which exploits sequeantial conditional moment restrictions for binary panel data with multiplicative latent effects. Among other findings the experiments show that the one-step and two-step estimators yield coverage rates of confidence intervals below their nominal coverage probabilities. The bootstrap methods improve upon this result.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

GMM, empirical likelihood, bootstrap, sequential moment restrictions

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690INKMANN, Joachim, 2000. Finite Sample Properties of One-step, Two-step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation
BibTex
@techreport{Inkmann2000Finit-12084,
  year={2000},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Finite Sample Properties of One-step, Two-step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation},
  number={2000/03},
  author={Inkmann, Joachim}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12084">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12084"/>
    <dcterms:issued>2000</dcterms:issued>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12084/1/418_1.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12084/1/418_1.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:35Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Inkmann, Joachim</dc:contributor>
    <dcterms:abstract xml:lang="eng">This paper compares conventional GMM estimators to empirical likelihood based GMM estimators which employ a semiparametric efficient estimate of the unknown distribution function of the data. One-step, two-step and bootstrap empirical likelihood and conventional GMM estimators are considered which are efficient for a given set of moment conditions. The estimators are subject to a Monte Carlo investigation using a specification which exploits sequeantial conditional moment restrictions for binary panel data with multiplicative latent effects. Among other findings the experiments show that the one-step and two-step estimators yield coverage rates of confidence intervals below their nominal coverage probabilities. The bootstrap methods improve upon this result.</dcterms:abstract>
    <dc:creator>Inkmann, Joachim</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:35Z</dc:date>
    <dcterms:title>Finite Sample Properties of One-step, Two-step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen