Publikation: The Biot Stress-Right Stretch Relation for the Compressible Neo-Hooke-Ciarlet-Geymonat Model and Rivlin’s Cube Problem
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The aim of the paper is to recall the importance of the study of invertibility and monotonicity of stress-strain relations for investigating the nonuniqueness and bifurcation of homogeneous solutions of the equilibrium problem of a hyperelastic cube subjected to equiaxial tensile forces. In other words, we reconsider a remarkable possibility in this nonlinear scenario: Does symmetric loading lead only to symmetric deformations or also to asymmetric deformations? If so, what can we say about monotonicity for these homogeneous solutions, a property which is less restrictive than the energetic stability criteria of homogeneous solutions for Rivlin’s cube problem. For the Neo-Hooke type materials we establish what properties the volumetric function h depending on detF must have to ensure the existence of a unique radial solution (i.e. the cube must continue to remain a cube) for any magnitude of radial stress acting on the cube. The function h proposed by Ciarlet and Geymonat satisfies these conditions. However, discontinuous equilibrium trajectories may occur, characterized by abruptly appearing non-symmetric deformations with increasing load, and a cube can instantaneously become a parallelepiped. Up to the load value for which the bifurcation in the radial solution is realized local monotonicity holds true. However, after exceeding this value, monotonicity no longer occurs on homogeneous deformations which, in turn, preserve the cube shape.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GHIBA, Ionel-Dumitrel, Franz GMEINEDER, Sebastian HOLTHAUSEN, Robert J. MARTIN, Patrizio NEFF, 2025. The Biot Stress-Right Stretch Relation for the Compressible Neo-Hooke-Ciarlet-Geymonat Model and Rivlin’s Cube Problem. In: Communications in Mathematical Analysis and Applications. Global Science Press. 2025, 4(1), S. 112-150. ISSN 2790-1920. eISSN 2790-1939. Verfügbar unter: doi: 10.4208/cmaa.2024-0026BibTex
@article{Ghiba2025-01-01Stres-73644, title={The Biot Stress-Right Stretch Relation for the Compressible Neo-Hooke-Ciarlet-Geymonat Model and Rivlin’s Cube Problem}, year={2025}, doi={10.4208/cmaa.2024-0026}, number={1}, volume={4}, issn={2790-1920}, journal={Communications in Mathematical Analysis and Applications}, pages={112--150}, author={Ghiba, Ionel-Dumitrel and Gmeineder, Franz and Holthausen, Sebastian and Martin, Robert J. and Neff, Patrizio} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73644"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-18T13:00:34Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Neff, Patrizio</dc:contributor> <dc:contributor>Gmeineder, Franz</dc:contributor> <dc:creator>Ghiba, Ionel-Dumitrel</dc:creator> <dc:contributor>Ghiba, Ionel-Dumitrel</dc:contributor> <dc:creator>Neff, Patrizio</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73644"/> <dc:creator>Martin, Robert J.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Holthausen, Sebastian</dc:contributor> <dc:language>eng</dc:language> <dcterms:issued>2025-01-01</dcterms:issued> <dcterms:title>The Biot Stress-Right Stretch Relation for the Compressible Neo-Hooke-Ciarlet-Geymonat Model and Rivlin’s Cube Problem</dcterms:title> <dcterms:abstract>The aim of the paper is to recall the importance of the study of invertibility and monotonicity of stress-strain relations for investigating the nonuniqueness and bifurcation of homogeneous solutions of the equilibrium problem of a hyperelastic cube subjected to equiaxial tensile forces. In other words, we reconsider a remarkable possibility in this nonlinear scenario: Does symmetric loading lead only to symmetric deformations or also to asymmetric deformations? If so, what can we say about monotonicity for these homogeneous solutions, a property which is less restrictive than the energetic stability criteria of homogeneous solutions for Rivlin’s cube problem. For the Neo-Hooke type materials we establish what properties the volumetric function h depending on detF must have to ensure the existence of a unique radial solution (i.e. the cube must continue to remain a cube) for any magnitude of radial stress acting on the cube. The function h proposed by Ciarlet and Geymonat satisfies these conditions. However, discontinuous equilibrium trajectories may occur, characterized by abruptly appearing non-symmetric deformations with increasing load, and a cube can instantaneously become a parallelepiped. Up to the load value for which the bifurcation in the radial solution is realized local monotonicity holds true. However, after exceeding this value, monotonicity no longer occurs on homogeneous deformations which, in turn, preserve the cube shape.</dcterms:abstract> <dc:contributor>Martin, Robert J.</dc:contributor> <dc:creator>Holthausen, Sebastian</dc:creator> <dc:creator>Gmeineder, Franz</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-18T13:00:34Z</dcterms:available> </rdf:Description> </rdf:RDF>