Publikation:

The Biot Stress-Right Stretch Relation for the Compressible Neo-Hooke-Ciarlet-Geymonat Model and Rivlin’s Cube Problem

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Ghiba, Ionel-Dumitrel
Holthausen, Sebastian
Martin, Robert J.
Neff, Patrizio

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Communications in Mathematical Analysis and Applications. Global Science Press. 2025, 4(1), S. 112-150. ISSN 2790-1920. eISSN 2790-1939. Verfügbar unter: doi: 10.4208/cmaa.2024-0026

Zusammenfassung

The aim of the paper is to recall the importance of the study of invertibility and monotonicity of stress-strain relations for investigating the nonuniqueness and bifurcation of homogeneous solutions of the equilibrium problem of a hyperelastic cube subjected to equiaxial tensile forces. In other words, we reconsider a remarkable possibility in this nonlinear scenario: Does symmetric loading lead only to symmetric deformations or also to asymmetric deformations? If so, what can we say about monotonicity for these homogeneous solutions, a property which is less restrictive than the energetic stability criteria of homogeneous solutions for Rivlin’s cube problem. For the Neo-Hooke type materials we establish what properties the volumetric function h depending on detF must have to ensure the existence of a unique radial solution (i.e. the cube must continue to remain a cube) for any magnitude of radial stress acting on the cube. The function h proposed by Ciarlet and Geymonat satisfies these conditions. However, discontinuous equilibrium trajectories may occur, characterized by abruptly appearing non-symmetric deformations with increasing load, and a cube can instantaneously become a parallelepiped. Up to the load value for which the bifurcation in the radial solution is realized local monotonicity holds true. However, after exceeding this value, monotonicity no longer occurs on homogeneous deformations which, in turn, preserve the cube shape.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Neo-Hooke-Ciarlet-Geymonat, bifurcation, Rivlin’s cube problem, invertibility, Hilbert-monotonicity, Biot stress-stretch relation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GHIBA, Ionel-Dumitrel, Franz GMEINEDER, Sebastian HOLTHAUSEN, Robert J. MARTIN, Patrizio NEFF, 2025. The Biot Stress-Right Stretch Relation for the Compressible Neo-Hooke-Ciarlet-Geymonat Model and Rivlin’s Cube Problem. In: Communications in Mathematical Analysis and Applications. Global Science Press. 2025, 4(1), S. 112-150. ISSN 2790-1920. eISSN 2790-1939. Verfügbar unter: doi: 10.4208/cmaa.2024-0026
BibTex
@article{Ghiba2025-01-01Stres-73644,
  title={The Biot Stress-Right Stretch Relation for the Compressible Neo-Hooke-Ciarlet-Geymonat Model and Rivlin’s Cube Problem},
  year={2025},
  doi={10.4208/cmaa.2024-0026},
  number={1},
  volume={4},
  issn={2790-1920},
  journal={Communications in Mathematical Analysis and Applications},
  pages={112--150},
  author={Ghiba, Ionel-Dumitrel and Gmeineder, Franz and Holthausen, Sebastian and Martin, Robert J. and Neff, Patrizio}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73644">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-18T13:00:34Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Neff, Patrizio</dc:contributor>
    <dc:contributor>Gmeineder, Franz</dc:contributor>
    <dc:creator>Ghiba, Ionel-Dumitrel</dc:creator>
    <dc:contributor>Ghiba, Ionel-Dumitrel</dc:contributor>
    <dc:creator>Neff, Patrizio</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73644"/>
    <dc:creator>Martin, Robert J.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Holthausen, Sebastian</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2025-01-01</dcterms:issued>
    <dcterms:title>The Biot Stress-Right Stretch Relation for the Compressible Neo-Hooke-Ciarlet-Geymonat Model and Rivlin’s Cube Problem</dcterms:title>
    <dcterms:abstract>The aim of the paper is to recall the importance of the study of invertibility and monotonicity of stress-strain relations for investigating the nonuniqueness and bifurcation of homogeneous solutions of the equilibrium problem of a hyperelastic cube subjected to equiaxial tensile forces. In other words, we reconsider a remarkable possibility in this nonlinear scenario: Does symmetric loading lead only to symmetric deformations or also to asymmetric deformations? If so, what can we say about monotonicity for these homogeneous solutions, a property which is less restrictive than the energetic stability criteria of homogeneous solutions for Rivlin’s cube problem. For the Neo-Hooke type materials we establish what properties the volumetric function h depending on detF must have to ensure the existence of a unique radial solution (i.e. the cube must continue to remain a cube) for any magnitude of radial stress acting on the cube. The function h proposed by Ciarlet and Geymonat satisfies these conditions. However, discontinuous equilibrium trajectories may occur, characterized by abruptly appearing non-symmetric deformations with increasing load, and a cube can instantaneously become a parallelepiped. Up to the load value for which the bifurcation in the radial solution is realized local monotonicity holds true. However, after exceeding this value, monotonicity no longer occurs on homogeneous deformations which, in turn, preserve the cube shape.</dcterms:abstract>
    <dc:contributor>Martin, Robert J.</dc:contributor>
    <dc:creator>Holthausen, Sebastian</dc:creator>
    <dc:creator>Gmeineder, Franz</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-18T13:00:34Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen