Publikation: Dynamic Modelling of Large Dimensional Covariance Matrices
Lade...
Dateien
Datum
2007
Autor:innen
Voev, Valeri
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
Modelling and forecasting the covariance of financial return series has always been a challenge due to the so-called "curse of dimensionality". This paper proposes a methodology that is applicable in large dimensional cases and is based on a time series of realized covariance matrices. Some solutions are also presented to the problem of non-positive definite forecasts. This methodology is then compared to some traditional models on the basis of its forecasting performance employing Diebold-Mariano tests. We show that our approach is better suited to capture the dynamic features of volatilities and covolatilities compared to the sample covariance based models.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
VOEV, Valeri, 2007. Dynamic Modelling of Large Dimensional Covariance MatricesBibTex
@techreport{Voev2007Dynam-12018, year={2007}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Dynamic Modelling of Large Dimensional Covariance Matrices}, number={2007/01}, author={Voev, Valeri} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12018"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:abstract xml:lang="eng">Modelling and forecasting the covariance of financial return series has always been a challenge due to the so-called "curse of dimensionality". This paper proposes a methodology that is applicable in large dimensional cases and is based on a time series of realized covariance matrices. Some solutions are also presented to the problem of non-positive definite forecasts. This methodology is then compared to some traditional models on the basis of its forecasting performance employing Diebold-Mariano tests. We show that our approach is better suited to capture the dynamic features of volatilities and covolatilities compared to the sample covariance based models.</dcterms:abstract> <dc:contributor>Voev, Valeri</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12018/1/dp07_01.pdf"/> <dc:creator>Voev, Valeri</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Dynamic Modelling of Large Dimensional Covariance Matrices</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:10Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12018"/> <dc:format>application/pdf</dc:format> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:issued>2007</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:10Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12018/1/dp07_01.pdf"/> </rdf:Description> </rdf:RDF>