Publikation:

A novel approach to quantify time series differences of gait data using attractor attributes

Lade...
Vorschaubild

Dateien

Vieten_243236.pdf
Vieten_243236.pdfGröße: 1.89 MBDownloads: 323

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PLoS ONE. 2013, 8(8), e71824. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0071824

Zusammenfassung

In this paper we introduce a new method to expressly use live/corporeal data in quantifying differences of time series data with an underlying limit cycle attractor; and apply it using an example of gait data. Our intention is to identify gait pattern differences between diverse situations and classify them on group and individual subject levels. First we approximated the limit cycle attractors, from which three measures were calculated: δM amounts to the difference between two attractors (a measure for the differences of two movements), δD computes the difference between the two associated deviations of the state vector away from the attractor (a measure for the change in movement variation), and δF, a combination of the previous two, is an index of the change. As an application we quantified these measures for walking on a treadmill under three different conditions: normal walking, dual task walking, and walking with additional weights at the ankle. The new method was able to successfully differentiate between the three walking conditions. Day to day repeatability, studied with repeated trials approximately one week apart, indicated excellent reliability for δM (ICCave > 0.73 with no differences across days; p > 0.05) and good reliability for δD (ICCave = 0.414 to 0.610 with no differences across days; p > 0.05). Based on the ability to detect differences in varying gait conditions and the good repeatability of the measures across days, the new method is recommended as an alternative to expensive and time consuming techniques of gait classification assessment. In particular, the new method is an easy to use diagnostic tool to quantify clinical changes in neurological patients.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
500 Naturwissenschaften

Schlagwörter

Acceleration, Accelerometers, Ankles, Fatigue, Multiple sclerosis, Nonlinear dynamics, Velocity, Walking

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690VIETEN, Manfred, Aida SEHLE, Randall JENSEN, 2013. A novel approach to quantify time series differences of gait data using attractor attributes. In: PLoS ONE. 2013, 8(8), e71824. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0071824
BibTex
@article{Vieten2013novel-24323,
  year={2013},
  doi={10.1371/journal.pone.0071824},
  title={A novel approach to quantify time series differences of gait data using attractor attributes},
  number={8},
  volume={8},
  journal={PLoS ONE},
  author={Vieten, Manfred and Sehle, Aida and Jensen, Randall},
  note={Article Number: e71824}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24323">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24323/1/Vieten_243236.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/>
    <dc:contributor>Sehle, Aida</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Sehle, Aida</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Jensen, Randall</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24323/1/Vieten_243236.pdf"/>
    <dcterms:bibliographicCitation>PLoS ONE ; 8 (2013), 8. - e71824</dcterms:bibliographicCitation>
    <dc:creator>Vieten, Manfred</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T12:54:09Z</dc:date>
    <dc:creator>Jensen, Randall</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24323"/>
    <dc:contributor>Vieten, Manfred</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>A novel approach to quantify time series differences of gait data using attractor attributes</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T12:54:09Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">In this paper we introduce a new method to expressly use live/corporeal data in quantifying differences of time series data with an underlying limit cycle attractor; and apply it using an example of gait data. Our intention is to identify gait pattern differences between diverse situations and classify them on group and individual subject levels. First we approximated the limit cycle attractors, from which three measures were calculated: δM amounts to the difference between two attractors (a measure for the differences of two movements), δD computes the difference between the two associated deviations of the state vector away from the attractor (a measure for the change in movement variation), and δF, a combination of the previous two, is an index of the change. As an application we quantified these measures for walking on a treadmill under three different conditions: normal walking, dual task walking, and walking with additional weights at the ankle. The new method was able to successfully differentiate between the three walking conditions. Day to day repeatability, studied with repeated trials approximately one week apart, indicated excellent reliability for δM (ICCave &gt; 0.73 with no differences across days; p &gt; 0.05) and good reliability for δD (ICCave = 0.414 to 0.610 with no differences across days; p &gt; 0.05). Based on the ability to detect differences in varying gait conditions and the good repeatability of the measures across days, the new method is recommended as an alternative to expensive and time consuming techniques of gait classification assessment. In particular, the new method is an easy to use diagnostic tool to quantify clinical changes in neurological patients.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2013</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen