Publikation:

Predicting Document Creation Times in News Citation Networks

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Spitz, Andreas
Strötgen, Jannik
Gertz, Michael

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

WWW ’18 Companion : The 2018 Web Conference Companion. New York, NY: ACM, 2018, pp. 1731-1736. ISBN 978-1-4503-5640-4. Available under: doi: 10.1145/3184558.3191633

Zusammenfassung

For the temporal analysis of news articles or the extraction of temporal expressions from such documents, accurate document creation times are indispensable. While document creation times are available as time stamps or HTML metadata in many cases, depending on the document collection in question, this data can be inaccurate or incomplete in others. Especially in digitally published online news articles, publication times are often missing from the article or inaccurate due to (partial) updates of the content at a later time. In this paper, we investigate the prediction of document creation times for articles in citation networks of digitally published news articles, which provide a network structure of knowledge flows between individual articles in addition to the contained temporal expressions. We explore the evolution of such networks to motivate the extraction of suitable features, which we utilize in a subsequent prediction of document creation times, framed as a regression task. Based on our evaluation of several established machine learning regressors on a large network of English news articles, we show that the combination of temporal and local structural features allows for the estimation of document creation times from the network.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

news, citation network, temporal evolution, document dating

Konferenz

WWW '18: The Web Conference 2018, 23. Apr. 2018 - 27. Apr. 2018, Lyon, France
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPITZ, Andreas, Jannik STRÖTGEN, Michael GERTZ, 2018. Predicting Document Creation Times in News Citation Networks. WWW '18: The Web Conference 2018. Lyon, France, 23. Apr. 2018 - 27. Apr. 2018. In: WWW ’18 Companion : The 2018 Web Conference Companion. New York, NY: ACM, 2018, pp. 1731-1736. ISBN 978-1-4503-5640-4. Available under: doi: 10.1145/3184558.3191633
BibTex
@inproceedings{Spitz2018Predi-55685,
  year={2018},
  doi={10.1145/3184558.3191633},
  title={Predicting Document Creation Times in News Citation Networks},
  isbn={978-1-4503-5640-4},
  publisher={ACM},
  address={New York, NY},
  booktitle={WWW ’18 Companion : The 2018 Web Conference Companion},
  pages={1731--1736},
  author={Spitz, Andreas and Strötgen, Jannik and Gertz, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55685">
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55685"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:37:18Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">For the temporal analysis of news articles or the extraction of temporal expressions from such documents, accurate document creation times are indispensable. While document creation times are available as time stamps or HTML metadata in many cases, depending on the document collection in question, this data can be inaccurate or incomplete in others. Especially in digitally published online news articles, publication times are often missing from the article or inaccurate due to (partial) updates of the content at a later time. In this paper, we investigate the prediction of document creation times for articles in citation networks of digitally published news articles, which provide a network structure of knowledge flows between individual articles in addition to the contained temporal expressions. We explore the evolution of such networks to motivate the extraction of suitable features, which we utilize in a subsequent prediction of document creation times, framed as a regression task. Based on our evaluation of several established machine learning regressors on a large network of English news articles, we show that the combination of temporal and local structural features allows for the estimation of document creation times from the network.</dcterms:abstract>
    <dc:creator>Gertz, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:37:18Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:issued>2018</dcterms:issued>
    <dc:creator>Spitz, Andreas</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Strötgen, Jannik</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Strötgen, Jannik</dc:creator>
    <dcterms:title>Predicting Document Creation Times in News Citation Networks</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Gertz, Michael</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen