Publikation: Predicting Document Creation Times in News Citation Networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
For the temporal analysis of news articles or the extraction of temporal expressions from such documents, accurate document creation times are indispensable. While document creation times are available as time stamps or HTML metadata in many cases, depending on the document collection in question, this data can be inaccurate or incomplete in others. Especially in digitally published online news articles, publication times are often missing from the article or inaccurate due to (partial) updates of the content at a later time. In this paper, we investigate the prediction of document creation times for articles in citation networks of digitally published news articles, which provide a network structure of knowledge flows between individual articles in addition to the contained temporal expressions. We explore the evolution of such networks to motivate the extraction of suitable features, which we utilize in a subsequent prediction of document creation times, framed as a regression task. Based on our evaluation of several established machine learning regressors on a large network of English news articles, we show that the combination of temporal and local structural features allows for the estimation of document creation times from the network.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SPITZ, Andreas, Jannik STRÖTGEN, Michael GERTZ, 2018. Predicting Document Creation Times in News Citation Networks. WWW '18: The Web Conference 2018. Lyon, France, 23. Apr. 2018 - 27. Apr. 2018. In: WWW ’18 Companion : The 2018 Web Conference Companion. New York, NY: ACM, 2018, pp. 1731-1736. ISBN 978-1-4503-5640-4. Available under: doi: 10.1145/3184558.3191633BibTex
@inproceedings{Spitz2018Predi-55685, year={2018}, doi={10.1145/3184558.3191633}, title={Predicting Document Creation Times in News Citation Networks}, isbn={978-1-4503-5640-4}, publisher={ACM}, address={New York, NY}, booktitle={WWW ’18 Companion : The 2018 Web Conference Companion}, pages={1731--1736}, author={Spitz, Andreas and Strötgen, Jannik and Gertz, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55685"> <dc:contributor>Spitz, Andreas</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55685"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:37:18Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">For the temporal analysis of news articles or the extraction of temporal expressions from such documents, accurate document creation times are indispensable. While document creation times are available as time stamps or HTML metadata in many cases, depending on the document collection in question, this data can be inaccurate or incomplete in others. Especially in digitally published online news articles, publication times are often missing from the article or inaccurate due to (partial) updates of the content at a later time. In this paper, we investigate the prediction of document creation times for articles in citation networks of digitally published news articles, which provide a network structure of knowledge flows between individual articles in addition to the contained temporal expressions. We explore the evolution of such networks to motivate the extraction of suitable features, which we utilize in a subsequent prediction of document creation times, framed as a regression task. Based on our evaluation of several established machine learning regressors on a large network of English news articles, we show that the combination of temporal and local structural features allows for the estimation of document creation times from the network.</dcterms:abstract> <dc:creator>Gertz, Michael</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:37:18Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:issued>2018</dcterms:issued> <dc:creator>Spitz, Andreas</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Strötgen, Jannik</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Strötgen, Jannik</dc:creator> <dcterms:title>Predicting Document Creation Times in News Citation Networks</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Gertz, Michael</dc:contributor> </rdf:Description> </rdf:RDF>