Timoshenko systems with indefinite damping

dc.contributor.authorMuñoz Rivera, Jaime E.deu
dc.contributor.authorRacke, Reinharddeu
dc.date.accessioned2011-03-22T17:45:13Zdeu
dc.date.available2011-03-22T17:45:13Zdeu
dc.date.issued2007deu
dc.description.abstractWe consider the Timoshenko system in a bounded domain $(0,L)\subset{\Bbb R}^1$. The system has an indefinite damping mechanism, i.e. with a damping function $a=a(x)$ possibly changing sign, present only in the equation for the rotation angle. We shall prove that the system is still exponentially stable under the same conditions as in the positive constant damping case, and provided $\overline{a}=\int_0^La(x)\;dx>0$ and $\|a-\overline{a}\|_{L^2}eng
dc.format.mimetypeapplication/pdfdeu
dc.identifier.ppn263504042deu
dc.identifier.urihttp://kops.uni-konstanz.de/handle/123456789/609
dc.language.isoengdeu
dc.legacy.dateIssued2007deu
dc.relation.ispartofseriesKonstanzer Schriften in Mathematik und Informatikdeu
dc.rightsAttribution-NonCommercial-NoDerivs 2.0 Generic
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/
dc.subjectTimoshenko systemdeu
dc.subjectexponential stabilitydeu
dc.subjectspectrum determined growth propertydeu
dc.subjectindefinite dampingdeu
dc.subject.ddc510deu
dc.subject.gndExponentielle Stabilitätdeu
dc.titleTimoshenko systems with indefinite dampingeng
dc.typeWORKINGPAPERdeu
dspace.entity.typePublication
kops.bibliographicInfo.seriesNumber230deu
kops.description.openAccessopenaccessgreen
kops.flag.knbibliographytrue
kops.identifier.nbnurn:nbn:de:bsz:352-opus-25413deu
kops.opus.id2541deu
temp.submission.doi
temp.submission.source

Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
preprint_230.pdf
Größe:
423.98 KB
Format:
Adobe Portable Document Format
preprint_230.pdf
preprint_230.pdfGröße: 423.98 KBDownloads: 395

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2022-09-13 12:22:42
1*
2011-03-22 17:45:13
* Ausgewählte Version