Publikation: Exponential utility maximization under model uncertainty for unbounded endowments
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider the robust exponential utility maximization problem in discrete time: An investor maximizes the worst case expected exponential utility with respect to a family of nondominated probabilistic models of her endowment by dynamically investing in a financial market, and statically in available options.
We show that, for any measurable random endowment (regardless of whether the problem is finite or not) an optimal strategy exists, a dual representation in terms of (calibrated) martingale measures holds true, and that the problem satisfies the dynamic programming principle (in case of no options). Further, it is shown that the value of the utility maximization problem converges to the robust superhedging price as the risk aversion parameter gets large, and examples of nondominated probabilistic models are discussed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARTL, Daniel, 2019. Exponential utility maximization under model uncertainty for unbounded endowments. In: The Annals of Applied Probability. 2019, 29(1), pp. 577-612. ISSN 1050-5164. eISSN 2168-8737. Available under: doi: 10.1214/18-AAP1428BibTex
@article{Bartl2019-02Expon-45473, year={2019}, doi={10.1214/18-AAP1428}, title={Exponential utility maximization under model uncertainty for unbounded endowments}, url={https://projecteuclid.org/euclid.aoap/1544000437}, number={1}, volume={29}, issn={1050-5164}, journal={The Annals of Applied Probability}, pages={577--612}, author={Bartl, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45473"> <dc:language>eng</dc:language> <dc:contributor>Bartl, Daniel</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-14T13:27:28Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Exponential utility maximization under model uncertainty for unbounded endowments</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-14T13:27:28Z</dcterms:available> <dc:creator>Bartl, Daniel</dc:creator> <dcterms:issued>2019-02</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45473"/> <dcterms:abstract xml:lang="eng">We consider the robust exponential utility maximization problem in discrete time: An investor maximizes the worst case expected exponential utility with respect to a family of nondominated probabilistic models of her endowment by dynamically investing in a financial market, and statically in available options.<br /><br />We show that, for any measurable random endowment (regardless of whether the problem is finite or not) an optimal strategy exists, a dual representation in terms of (calibrated) martingale measures holds true, and that the problem satisfies the dynamic programming principle (in case of no options). Further, it is shown that the value of the utility maximization problem converges to the robust superhedging price as the risk aversion parameter gets large, and examples of nondominated probabilistic models are discussed.</dcterms:abstract> </rdf:Description> </rdf:RDF>