Publikation:

Exponential utility maximization under model uncertainty for unbounded endowments

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The Annals of Applied Probability. 2019, 29(1), pp. 577-612. ISSN 1050-5164. eISSN 2168-8737. Available under: doi: 10.1214/18-AAP1428

Zusammenfassung

We consider the robust exponential utility maximization problem in discrete time: An investor maximizes the worst case expected exponential utility with respect to a family of nondominated probabilistic models of her endowment by dynamically investing in a financial market, and statically in available options.

We show that, for any measurable random endowment (regardless of whether the problem is finite or not) an optimal strategy exists, a dual representation in terms of (calibrated) martingale measures holds true, and that the problem satisfies the dynamic programming principle (in case of no options). Further, it is shown that the value of the utility maximization problem converges to the robust superhedging price as the risk aversion parameter gets large, and examples of nondominated probabilistic models are discussed.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BARTL, Daniel, 2019. Exponential utility maximization under model uncertainty for unbounded endowments. In: The Annals of Applied Probability. 2019, 29(1), pp. 577-612. ISSN 1050-5164. eISSN 2168-8737. Available under: doi: 10.1214/18-AAP1428
BibTex
@article{Bartl2019-02Expon-45473,
  year={2019},
  doi={10.1214/18-AAP1428},
  title={Exponential utility maximization under model uncertainty for unbounded endowments},
  url={https://projecteuclid.org/euclid.aoap/1544000437},
  number={1},
  volume={29},
  issn={1050-5164},
  journal={The Annals of Applied Probability},
  pages={577--612},
  author={Bartl, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45473">
    <dc:language>eng</dc:language>
    <dc:contributor>Bartl, Daniel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-14T13:27:28Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Exponential utility maximization under model uncertainty for unbounded endowments</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-14T13:27:28Z</dcterms:available>
    <dc:creator>Bartl, Daniel</dc:creator>
    <dcterms:issued>2019-02</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45473"/>
    <dcterms:abstract xml:lang="eng">We consider the robust exponential utility maximization problem in discrete time: An investor maximizes the worst case expected exponential utility with respect to a family of nondominated probabilistic models of her endowment by dynamically investing in a financial market, and statically in available options.&lt;br /&gt;&lt;br /&gt;We show that, for any measurable random endowment (regardless of whether the problem is finite or not) an optimal strategy exists, a dual representation in terms of (calibrated) martingale measures holds true, and that the problem satisfies the dynamic programming principle (in case of no options). Further, it is shown that the value of the utility maximization problem converges to the robust superhedging price as the risk aversion parameter gets large, and examples of nondominated probabilistic models are discussed.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2019-03-14

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen