Publikation: GenDR : A Generalized Differentiable Renderer
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this work, we present and study a generalized family of differentiable renderers. We discuss from scratch which components are necessary for differentiable rendering and formalize the requirements for each component. We instantiate our general differentiable renderer, which generalizes existing differentiable renderers like SoftRas and DIB-R, with an array of different smoothing distributions to cover a large spectrum of reasonable settings. We evaluate an array of differentiable renderer instantiations on the popular ShapeNet 3D reconstruction benchmark and analyze the implications of our results. Surprisingly, the simple uniform distribution yields the best overall results when averaged over 13 classes; in general, however, the optimal choice of distribution heavily depends on the task.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PETERSEN, Felix, Bastian GOLDLÜCKE, Christian BORGELT, Oliver DEUSSEN, 2022. GenDR : A Generalized Differentiable Renderer. Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, Louisiana, 19. Juni 2022 - 24. Juni 2022. In: CHELLAPPA, Rama, Hrsg. und andere. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, proceedings. Piscataway, NJ: IEEE, 2022, S. 3992-4001. ISSN 1063-6919. eISSN 2575-7075. ISBN 978-1-66546-947-0. Verfügbar unter: doi: 10.1109/CVPR52688.2022.00397BibTex
@inproceedings{Petersen2022GenDR-59665, year={2022}, doi={10.1109/CVPR52688.2022.00397}, title={GenDR : A Generalized Differentiable Renderer}, isbn={978-1-66546-947-0}, issn={1063-6919}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, proceedings}, pages={3992--4001}, editor={Chellappa, Rama}, author={Petersen, Felix and Goldlücke, Bastian and Borgelt, Christian and Deussen, Oliver} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59665"> <dc:creator>Petersen, Felix</dc:creator> <dc:contributor>Petersen, Felix</dc:contributor> <dc:contributor>Deussen, Oliver</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59665/1/Petersen_2-higtd3nfrmvv7.pdf"/> <dc:creator>Borgelt, Christian</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-10T13:25:06Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59665"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59665/1/Petersen_2-higtd3nfrmvv7.pdf"/> <dc:creator>Deussen, Oliver</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>GenDR : A Generalized Differentiable Renderer</dcterms:title> <dc:creator>Goldlücke, Bastian</dc:creator> <dcterms:issued>2022</dcterms:issued> <dc:contributor>Borgelt, Christian</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Goldlücke, Bastian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">In this work, we present and study a generalized family of differentiable renderers. We discuss from scratch which components are necessary for differentiable rendering and formalize the requirements for each component. We instantiate our general differentiable renderer, which generalizes existing differentiable renderers like SoftRas and DIB-R, with an array of different smoothing distributions to cover a large spectrum of reasonable settings. We evaluate an array of differentiable renderer instantiations on the popular ShapeNet 3D reconstruction benchmark and analyze the implications of our results. Surprisingly, the simple uniform distribution yields the best overall results when averaged over 13 classes; in general, however, the optimal choice of distribution heavily depends on the task.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-10T13:25:06Z</dcterms:available> </rdf:Description> </rdf:RDF>