GenDR : A Generalized Differentiable Renderer

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
CHELLAPPA, Rama, ed. and others. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, proceedings. Piscataway, NJ: IEEE, 2022, pp. 3992-4001. ISSN 1063-6919. eISSN 2575-7075. ISBN 978-1-66546-947-0. Available under: doi: 10.1109/CVPR52688.2022.00397
Zusammenfassung

In this work, we present and study a generalized family of differentiable renderers. We discuss from scratch which components are necessary for differentiable rendering and formalize the requirements for each component. We instantiate our general differentiable renderer, which generalizes existing differentiable renderers like SoftRas and DIB-R, with an array of different smoothing distributions to cover a large spectrum of reasonable settings. We evaluate an array of differentiable renderer instantiations on the popular ShapeNet 3D reconstruction benchmark and analyze the implications of our results. Surprisingly, the simple uniform distribution yields the best overall results when averaged over 13 classes; in general, however, the optimal choice of distribution heavily depends on the task.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Conference on Computer Vision and Pattern Recognition (CVPR 2022), 19. Juni 2022 - 24. Juni 2022, New Orleans, Louisiana
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690PETERSEN, Felix, Bastian GOLDLÜCKE, Christian BORGELT, Oliver DEUSSEN, 2022. GenDR : A Generalized Differentiable Renderer. Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, Louisiana, 19. Juni 2022 - 24. Juni 2022. In: CHELLAPPA, Rama, ed. and others. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, proceedings. Piscataway, NJ: IEEE, 2022, pp. 3992-4001. ISSN 1063-6919. eISSN 2575-7075. ISBN 978-1-66546-947-0. Available under: doi: 10.1109/CVPR52688.2022.00397
BibTex
@inproceedings{Petersen2022GenDR-59665,
  year={2022},
  doi={10.1109/CVPR52688.2022.00397},
  title={GenDR : A Generalized Differentiable Renderer},
  isbn={978-1-66546-947-0},
  issn={1063-6919},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, proceedings},
  pages={3992--4001},
  editor={Chellappa, Rama},
  author={Petersen, Felix and Goldlücke, Bastian and Borgelt, Christian and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59665">
    <dc:creator>Petersen, Felix</dc:creator>
    <dc:contributor>Petersen, Felix</dc:contributor>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-10T13:25:06Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59665"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>GenDR : A Generalized Differentiable Renderer</dcterms:title>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">In this work, we present and study a generalized family of differentiable renderers. We discuss from scratch which components are necessary for differentiable rendering and formalize the requirements for each component. We instantiate our general differentiable renderer, which generalizes existing differentiable renderers like SoftRas and DIB-R, with an array of different smoothing distributions to cover a large spectrum of reasonable settings. We evaluate an array of differentiable renderer instantiations on the popular ShapeNet 3D reconstruction benchmark and analyze the implications of our results. Surprisingly, the simple uniform distribution yields the best overall results when averaged over 13 classes; in general, however, the optimal choice of distribution heavily depends on the task.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-10T13:25:06Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen