Publikation:

GenDR : A Generalized Differentiable Renderer

Lade...
Vorschaubild

Dateien

Petersen_2-higtd3nfrmvv7.pdf
Petersen_2-higtd3nfrmvv7.pdfGröße: 1.82 MBDownloads: 4

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CHELLAPPA, Rama, Hrsg. und andere. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, proceedings. Piscataway, NJ: IEEE, 2022, S. 3992-4001. ISSN 1063-6919. eISSN 2575-7075. ISBN 978-1-66546-947-0. Verfügbar unter: doi: 10.1109/CVPR52688.2022.00397

Zusammenfassung

In this work, we present and study a generalized family of differentiable renderers. We discuss from scratch which components are necessary for differentiable rendering and formalize the requirements for each component. We instantiate our general differentiable renderer, which generalizes existing differentiable renderers like SoftRas and DIB-R, with an array of different smoothing distributions to cover a large spectrum of reasonable settings. We evaluate an array of differentiable renderer instantiations on the popular ShapeNet 3D reconstruction benchmark and analyze the implications of our results. Surprisingly, the simple uniform distribution yields the best overall results when averaged over 13 classes; in general, however, the optimal choice of distribution heavily depends on the task.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Conference on Computer Vision and Pattern Recognition (CVPR 2022), 19. Juni 2022 - 24. Juni 2022, New Orleans, Louisiana
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PETERSEN, Felix, Bastian GOLDLÜCKE, Christian BORGELT, Oliver DEUSSEN, 2022. GenDR : A Generalized Differentiable Renderer. Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, Louisiana, 19. Juni 2022 - 24. Juni 2022. In: CHELLAPPA, Rama, Hrsg. und andere. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, proceedings. Piscataway, NJ: IEEE, 2022, S. 3992-4001. ISSN 1063-6919. eISSN 2575-7075. ISBN 978-1-66546-947-0. Verfügbar unter: doi: 10.1109/CVPR52688.2022.00397
BibTex
@inproceedings{Petersen2022GenDR-59665,
  year={2022},
  doi={10.1109/CVPR52688.2022.00397},
  title={GenDR : A Generalized Differentiable Renderer},
  isbn={978-1-66546-947-0},
  issn={1063-6919},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, proceedings},
  pages={3992--4001},
  editor={Chellappa, Rama},
  author={Petersen, Felix and Goldlücke, Bastian and Borgelt, Christian and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59665">
    <dc:creator>Petersen, Felix</dc:creator>
    <dc:contributor>Petersen, Felix</dc:contributor>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59665/1/Petersen_2-higtd3nfrmvv7.pdf"/>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-10T13:25:06Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59665"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59665/1/Petersen_2-higtd3nfrmvv7.pdf"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>GenDR : A Generalized Differentiable Renderer</dcterms:title>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">In this work, we present and study a generalized family of differentiable renderers. We discuss from scratch which components are necessary for differentiable rendering and formalize the requirements for each component. We instantiate our general differentiable renderer, which generalizes existing differentiable renderers like SoftRas and DIB-R, with an array of different smoothing distributions to cover a large spectrum of reasonable settings. We evaluate an array of differentiable renderer instantiations on the popular ShapeNet 3D reconstruction benchmark and analyze the implications of our results. Surprisingly, the simple uniform distribution yields the best overall results when averaged over 13 classes; in general, however, the optimal choice of distribution heavily depends on the task.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-10T13:25:06Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen