Publikation: Steps to Facilitate the Use of Clinical Gait Analysis in Stroke Patients : The Validation of a Single 2D RGB Smartphone Video-Based System for Gait Analysis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Clinical gait analysis plays a central role in the rehabilitation of stroke patients. However, practical and technical challenges limit their use in clinical settings. This study aimed to validate SMARTGAIT, a deep learning-based gait analysis system that addresses these limitations. Eight stroke patients took part in the study at the Human Performance Research Centre of the University of Konstanz. Gait measurements were taken using both the marker-based Vicon motion capture system and the single-smartphone-based SMARTGAIT system. We evaluated the agreement for knee, hip, and ankle joint angle kinematics in the frontal and sagittal plane and spatiotemporal gait parameters between the two systems. The results mostly demonstrated high levels of agreement between the two systems, with Pearson correlations of ≥0.79 for all lower body angle kinematics in the sagittal plane and correlations of ≥0.71 in the frontal plane. RMSE values were ≤4.6°. The intraclass correlation coefficients for all derived gait parameters showed good to excellent levels of agreement. SMARTGAIT is a promising tool for gait analysis in stroke, particularly for quantifying gait characteristics in the sagittal plane, which is very relevant for clinical gait analysis. However, further analyses are required to validate the use of SMARTGAIT in larger samples and its transferability to different types of pathological gait. In conclusion, a single smartphone recording (monocular 2D RGB camera) could make gait analysis more accessible in clinical settings, potentially simplifying the process and making it more feasible for therapists and doctors to use in their day-to-day practice.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARZYK, Philipp, Alina Sophie BODEN, Justin HOWALDT, Jana STÜRNER, Philip ZIMMERMANN, Daniel SEEBACHER, Joachim LIEPERT, Manuel STEIN, Markus GRUBER, Michael SCHWENK, 2024. Steps to Facilitate the Use of Clinical Gait Analysis in Stroke Patients : The Validation of a Single 2D RGB Smartphone Video-Based System for Gait Analysis. In: Sensors. MDPI. 2024, 24(23), 7819. eISSN 1424-8220. Verfügbar unter: doi: 10.3390/s24237819BibTex
@article{Barzyk2024-12-06Steps-71615, year={2024}, doi={10.3390/s24237819}, title={Steps to Facilitate the Use of Clinical Gait Analysis in Stroke Patients : The Validation of a Single 2D RGB Smartphone Video-Based System for Gait Analysis}, url={https://www.mdpi.com/1424-8220/24/23/7819}, number={23}, volume={24}, journal={Sensors}, author={Barzyk, Philipp and Boden, Alina Sophie and Howaldt, Justin and Stürner, Jana and Zimmermann, Philip and Seebacher, Daniel and Liepert, Joachim and Stein, Manuel and Gruber, Markus and Schwenk, Michael}, note={Article Number: 7819} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71615"> <dc:creator>Gruber, Markus</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71615"/> <dc:contributor>Howaldt, Justin</dc:contributor> <dc:contributor>Stürner, Jana</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/> <dcterms:issued>2024-12-06</dcterms:issued> <dc:creator>Stürner, Jana</dc:creator> <dcterms:title>Steps to Facilitate the Use of Clinical Gait Analysis in Stroke Patients : The Validation of a Single 2D RGB Smartphone Video-Based System for Gait Analysis</dcterms:title> <dc:contributor>Schwenk, Michael</dc:contributor> <dc:contributor>Gruber, Markus</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Zimmermann, Philip</dc:contributor> <dc:contributor>Liepert, Joachim</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-09T12:39:41Z</dc:date> <dc:contributor>Stein, Manuel</dc:contributor> <dc:creator>Stein, Manuel</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-09T12:39:41Z</dcterms:available> <dcterms:abstract>Clinical gait analysis plays a central role in the rehabilitation of stroke patients. However, practical and technical challenges limit their use in clinical settings. This study aimed to validate SMARTGAIT, a deep learning-based gait analysis system that addresses these limitations. Eight stroke patients took part in the study at the Human Performance Research Centre of the University of Konstanz. Gait measurements were taken using both the marker-based Vicon motion capture system and the single-smartphone-based SMARTGAIT system. We evaluated the agreement for knee, hip, and ankle joint angle kinematics in the frontal and sagittal plane and spatiotemporal gait parameters between the two systems. The results mostly demonstrated high levels of agreement between the two systems, with Pearson correlations of ≥0.79 for all lower body angle kinematics in the sagittal plane and correlations of ≥0.71 in the frontal plane. RMSE values were ≤4.6°. The intraclass correlation coefficients for all derived gait parameters showed good to excellent levels of agreement. SMARTGAIT is a promising tool for gait analysis in stroke, particularly for quantifying gait characteristics in the sagittal plane, which is very relevant for clinical gait analysis. However, further analyses are required to validate the use of SMARTGAIT in larger samples and its transferability to different types of pathological gait. In conclusion, a single smartphone recording (monocular 2D RGB camera) could make gait analysis more accessible in clinical settings, potentially simplifying the process and making it more feasible for therapists and doctors to use in their day-to-day practice.</dcterms:abstract> <dc:creator>Liepert, Joachim</dc:creator> <dc:creator>Seebacher, Daniel</dc:creator> <dc:creator>Boden, Alina Sophie</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71615/1/Barzyk_2-hftwpbupzpko3.PDF"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71615/1/Barzyk_2-hftwpbupzpko3.PDF"/> <dc:contributor>Barzyk, Philipp</dc:contributor> <dc:creator>Barzyk, Philipp</dc:creator> <dc:creator>Zimmermann, Philip</dc:creator> <dc:contributor>Seebacher, Daniel</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/> <dc:contributor>Boden, Alina Sophie</dc:contributor> <dc:creator>Schwenk, Michael</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Howaldt, Justin</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>