Publikation: Maximum Entropy Estimation via Gauss-LP Quadratures
Lade...
Dateien
Datum
2017
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IFAC-PapersOnLine. Elsevier. 2017, 50(1), S. 10470-10475. eISSN 1474-6670. Verfügbar unter: doi: 10.1016/j.ifacol.2017.08.1977
Zusammenfassung
We present an approximation method to a class of parametric integration problems that naturally appear when solving the dual of the maximum entropy estimation problem. Our method builds up on a recent generalization of Gauss quadratures via an infinite-dimensional linear program, and utilizes a convex clustering algorithm to compute an approximate solution which requires reduced computational effort. It shows to be particularly appealing when looking at problems with unusual domains and in a multi-dimensional setting. As a proof of concept we apply our method to an example problem on the unit disc.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Entropy maximization, convex clustering, linear programming, importance sampling
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
THÉLY, Maxime, Tobias SUTTER, Peyman Mohajerin ESFAHANI, John LYGEROS, 2017. Maximum Entropy Estimation via Gauss-LP Quadratures. In: IFAC-PapersOnLine. Elsevier. 2017, 50(1), S. 10470-10475. eISSN 1474-6670. Verfügbar unter: doi: 10.1016/j.ifacol.2017.08.1977BibTex
@article{Thely2017Maxim-55739, year={2017}, doi={10.1016/j.ifacol.2017.08.1977}, title={Maximum Entropy Estimation via Gauss-LP Quadratures}, number={1}, volume={50}, journal={IFAC-PapersOnLine}, pages={10470--10475}, author={Thély, Maxime and Sutter, Tobias and Esfahani, Peyman Mohajerin and Lygeros, John} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55739"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55739"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Lygeros, John</dc:contributor> <dc:creator>Esfahani, Peyman Mohajerin</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55739/1/Thely_2-hfpzeuoo4v9o8.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:50:34Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Sutter, Tobias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Thély, Maxime</dc:contributor> <dc:creator>Lygeros, John</dc:creator> <dcterms:abstract xml:lang="eng">We present an approximation method to a class of parametric integration problems that naturally appear when solving the dual of the maximum entropy estimation problem. Our method builds up on a recent generalization of Gauss quadratures via an infinite-dimensional linear program, and utilizes a convex clustering algorithm to compute an approximate solution which requires reduced computational effort. It shows to be particularly appealing when looking at problems with unusual domains and in a multi-dimensional setting. As a proof of concept we apply our method to an example problem on the unit disc.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55739/1/Thely_2-hfpzeuoo4v9o8.pdf"/> <dc:creator>Thély, Maxime</dc:creator> <dc:contributor>Sutter, Tobias</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:50:34Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Esfahani, Peyman Mohajerin</dc:contributor> <dcterms:title>Maximum Entropy Estimation via Gauss-LP Quadratures</dcterms:title> <dc:language>eng</dc:language> <dcterms:issued>2017</dcterms:issued> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt