Publikation:

Maximum Entropy Estimation via Gauss-LP Quadratures

Lade...
Vorschaubild

Dateien

Thely_2-hfpzeuoo4v9o8.pdf
Thely_2-hfpzeuoo4v9o8.pdfGröße: 729.22 KBDownloads: 11

Datum

2017

Autor:innen

Thély, Maxime
Esfahani, Peyman Mohajerin
Lygeros, John

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IFAC-PapersOnLine. Elsevier. 2017, 50(1), S. 10470-10475. eISSN 1474-6670. Verfügbar unter: doi: 10.1016/j.ifacol.2017.08.1977

Zusammenfassung

We present an approximation method to a class of parametric integration problems that naturally appear when solving the dual of the maximum entropy estimation problem. Our method builds up on a recent generalization of Gauss quadratures via an infinite-dimensional linear program, and utilizes a convex clustering algorithm to compute an approximate solution which requires reduced computational effort. It shows to be particularly appealing when looking at problems with unusual domains and in a multi-dimensional setting. As a proof of concept we apply our method to an example problem on the unit disc.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Entropy maximization, convex clustering, linear programming, importance sampling

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690THÉLY, Maxime, Tobias SUTTER, Peyman Mohajerin ESFAHANI, John LYGEROS, 2017. Maximum Entropy Estimation via Gauss-LP Quadratures. In: IFAC-PapersOnLine. Elsevier. 2017, 50(1), S. 10470-10475. eISSN 1474-6670. Verfügbar unter: doi: 10.1016/j.ifacol.2017.08.1977
BibTex
@article{Thely2017Maxim-55739,
  year={2017},
  doi={10.1016/j.ifacol.2017.08.1977},
  title={Maximum Entropy Estimation via Gauss-LP Quadratures},
  number={1},
  volume={50},
  journal={IFAC-PapersOnLine},
  pages={10470--10475},
  author={Thély, Maxime and Sutter, Tobias and Esfahani, Peyman Mohajerin and Lygeros, John}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55739">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55739"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Lygeros, John</dc:contributor>
    <dc:creator>Esfahani, Peyman Mohajerin</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55739/1/Thely_2-hfpzeuoo4v9o8.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:50:34Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Sutter, Tobias</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Thély, Maxime</dc:contributor>
    <dc:creator>Lygeros, John</dc:creator>
    <dcterms:abstract xml:lang="eng">We present an approximation method to a class of parametric integration problems that naturally appear when solving the dual of the maximum entropy estimation problem. Our method builds up on a recent generalization of Gauss quadratures via an infinite-dimensional linear program, and utilizes a convex clustering algorithm to compute an approximate solution which requires reduced computational effort. It shows to be particularly appealing when looking at problems with unusual domains and in a multi-dimensional setting. As a proof of concept we apply our method to an example problem on the unit disc.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55739/1/Thely_2-hfpzeuoo4v9o8.pdf"/>
    <dc:creator>Thély, Maxime</dc:creator>
    <dc:contributor>Sutter, Tobias</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:50:34Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Esfahani, Peyman Mohajerin</dc:contributor>
    <dcterms:title>Maximum Entropy Estimation via Gauss-LP Quadratures</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:issued>2017</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen