Publikation:

An unobtrusive computerized assessment framework for unilateral peripheral facial paralysis

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Guo, Zhe-Xiao
Dan, Guo
Xiang, Jianghuai
Wang, Jun
Yang, Wanzhang
Ding, Huijun
Zhou, Yongjin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Journal of Biomedical and Health Informatics. 2018, 22(3), pp. 835-841. ISSN 2168-2194. eISSN 2168-2208. Available under: doi: 10.1109/JBHI.2017.2707588

Zusammenfassung

Unilateral peripheral facial paralysis (UPFP) is a form of facial nerve paralysis and clinically classified according to conditions of facial symmetry. Prompt and precise assessment is crucial to neural rehabilitation of UPFP. The prevalent House-Brackmann (HB) grading system relies on subjective judgments with significant inter-observation variation. Therefore to explore an objective method for UPFP assessment, clinical image sequences are captured using a web camera setup while 5 healthy and 27 UPFP subjects performing a group of pre-defined actions, including keeping expressionless, raising brows, closing eyes, bulging cheek and showing teeth in turn. Firstly, facial region is decided using Haar cascade classifier, and then landmark points are acquired by supervised descent method (SDM). Secondly, these landmark points are used to generate a group of features reflecting the structural parameters of regions of eyebrows, eyes, nose and mouth respectively. Thirdly, correlation coefficients are computed between the raw features HB scores. To reduce feature dimensions, only those with correlation coefficients larger than an empirically selected value, 0.35, are input into support vector machine (SVM) to generate a classifier. With the classifier, exact match (discrepancy=0 between result from proposed method and HB scores) rate at 49.9%, and loosematch (discrepancy=1) rate at 87.97% are achieved on the experiment data. After sample augmentation, the final rate is increased to 90.01%, outperformed previous reports. In conclusion, it's demonstrated with an unobtrusive web camera setup, encouraging results have been generated with the proposed framework in this exploratory study.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Facial neural rehabilitation, facial symmetry, HB grading system, computerized assessment

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GUO, Zhe-Xiao, Guo DAN, Jianghuai XIANG, Jun WANG, Wanzhang YANG, Huijun DING, Oliver DEUSSEN, Yongjin ZHOU, 2018. An unobtrusive computerized assessment framework for unilateral peripheral facial paralysis. In: IEEE Journal of Biomedical and Health Informatics. 2018, 22(3), pp. 835-841. ISSN 2168-2194. eISSN 2168-2208. Available under: doi: 10.1109/JBHI.2017.2707588
BibTex
@article{Guo2018-05unobt-39637,
  year={2018},
  doi={10.1109/JBHI.2017.2707588},
  title={An unobtrusive computerized assessment framework for unilateral peripheral facial paralysis},
  number={3},
  volume={22},
  issn={2168-2194},
  journal={IEEE Journal of Biomedical and Health Informatics},
  pages={835--841},
  author={Guo, Zhe-Xiao and Dan, Guo and Xiang, Jianghuai and Wang, Jun and Yang, Wanzhang and Ding, Huijun and Deussen, Oliver and Zhou, Yongjin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39637">
    <dc:contributor>Wang, Jun</dc:contributor>
    <dc:creator>Dan, Guo</dc:creator>
    <dcterms:issued>2018-05</dcterms:issued>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dcterms:abstract xml:lang="eng">Unilateral peripheral facial paralysis (UPFP) is a form of facial nerve paralysis and clinically classified according to conditions of facial symmetry. Prompt and precise assessment is crucial to neural rehabilitation of UPFP. The prevalent House-Brackmann (HB) grading system relies on subjective judgments with significant inter-observation variation. Therefore to explore an objective method for UPFP assessment, clinical image sequences are captured using a web camera setup while 5 healthy and 27 UPFP subjects performing a group of pre-defined actions, including keeping expressionless, raising brows, closing eyes, bulging cheek and showing teeth in turn. Firstly, facial region is decided using Haar cascade classifier, and then landmark points are acquired by supervised descent method (SDM). Secondly, these landmark points are used to generate a group of features reflecting the structural parameters of regions of eyebrows, eyes, nose and mouth respectively. Thirdly, correlation coefficients are computed between the raw features HB scores. To reduce feature dimensions, only those with correlation coefficients larger than an empirically selected value, 0.35, are input into support vector machine (SVM) to generate a classifier. With the classifier, exact match (discrepancy=0 between result from proposed method and HB scores) rate at 49.9%, and loosematch (discrepancy=1) rate at 87.97% are achieved on the experiment data. After sample augmentation, the final rate is increased to 90.01%, outperformed previous reports. In conclusion, it's demonstrated with an unobtrusive web camera setup, encouraging results have been generated with the proposed framework in this exploratory study.</dcterms:abstract>
    <dc:contributor>Dan, Guo</dc:contributor>
    <dc:creator>Guo, Zhe-Xiao</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-21T12:31:45Z</dc:date>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Yang, Wanzhang</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-07-21T12:31:45Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Yang, Wanzhang</dc:contributor>
    <dc:contributor>Xiang, Jianghuai</dc:contributor>
    <dc:creator>Zhou, Yongjin</dc:creator>
    <dc:contributor>Guo, Zhe-Xiao</dc:contributor>
    <dc:creator>Xiang, Jianghuai</dc:creator>
    <dc:contributor>Ding, Huijun</dc:contributor>
    <dcterms:title>An unobtrusive computerized assessment framework for unilateral peripheral facial paralysis</dcterms:title>
    <dc:creator>Wang, Jun</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39637"/>
    <dc:contributor>Zhou, Yongjin</dc:contributor>
    <dc:creator>Ding, Huijun</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Nein
Diese Publikation teilen