Publikation: Scalable Pixel based Visual Data Exploration
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Pixel based visualization techniques have proven to be of high value in visual data exploration. Mapping data points to pixels not only allows the analysis and visualization of large data sets, but also provides an intuitive way to convert raw data into a graphical form. The graphical representation fosters new insights and encourages the formation and validation of new hypotheses to the end of better problem solving and gaining deeper domain knowledge. However, the ever increasing amount of information leads to new challenges for pixel-based techniques and concepts, especially if the number of data points significantly exceeds the available screen resolution. The paper focuses on ways to improve the scalability of pixel based techniques by proposing a multiresolution pixel-oriented visual exploration approach for large datasets. This approach combines clustering techniques with pixel-oriented mappings to preserve local clusters while providing space filling relevancedriven representations of the whole data set or portions of the data. The paper presents different application scenarios from the fields of financial analysis, geo-visualization, and network data analysis that clearly show the practical benefit of the multi-resolution approach for tackling the problem of scalability.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KEIM, Daniel A., Jörn SCHNEIDEWIND, Mike SIPS, 2006. Scalable Pixel based Visual Data Exploration. In: P. LÉVY, Pierre, ed. and others. Pixelization paradigm : first Visual Information Expert Workshop, VIEW 2006, Paris, France, April 24 - 25, 2006; revised selected papers. Berlin [u.a.]: Springer, 2006, pp. 12-24. Lecture Notes in Computer Science. 4370. ISBN 978-3-540-71026-4BibTex
@inproceedings{Keim2006Scala-5617, year={2006}, title={Scalable Pixel based Visual Data Exploration}, number={4370}, isbn={978-3-540-71026-4}, publisher={Springer}, address={Berlin [u.a.]}, series={Lecture Notes in Computer Science}, booktitle={Pixelization paradigm : first Visual Information Expert Workshop, VIEW 2006, Paris, France, April 24 - 25, 2006; revised selected papers}, pages={12--24}, editor={P. Lévy, Pierre}, author={Keim, Daniel A. and Schneidewind, Jörn and Sips, Mike} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5617"> <dc:contributor>Keim, Daniel A.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5617/1/scalable_pixel_exploration.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:format>application/pdf</dc:format> <dc:creator>Schneidewind, Jörn</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Scalable Pixel based Visual Data Exploration</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:13Z</dcterms:available> <dc:creator>Keim, Daniel A.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:13Z</dc:date> <dcterms:issued>2006</dcterms:issued> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>First publ. in: Lecture Notes In Computer Science, No 4370 (2006), pp. 12-24</dcterms:bibliographicCitation> <dc:contributor>Schneidewind, Jörn</dc:contributor> <dc:creator>Sips, Mike</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:contributor>Sips, Mike</dc:contributor> <dcterms:abstract xml:lang="eng">Pixel based visualization techniques have proven to be of high value in visual data exploration. Mapping data points to pixels not only allows the analysis and visualization of large data sets, but also provides an intuitive way to convert raw data into a graphical form. The graphical representation fosters new insights and encourages the formation and validation of new hypotheses to the end of better problem solving and gaining deeper domain knowledge. However, the ever increasing amount of information leads to new challenges for pixel-based techniques and concepts, especially if the number of data points significantly exceeds the available screen resolution. The paper focuses on ways to improve the scalability of pixel based techniques by proposing a multiresolution pixel-oriented visual exploration approach for large datasets. This approach combines clustering techniques with pixel-oriented mappings to preserve local clusters while providing space filling relevancedriven representations of the whole data set or portions of the data. The paper presents different application scenarios from the fields of financial analysis, geo-visualization, and network data analysis that clearly show the practical benefit of the multi-resolution approach for tackling the problem of scalability.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5617"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5617/1/scalable_pixel_exploration.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>