Publikation:

Scalable Pixel based Visual Data Exploration

Lade...
Vorschaubild

Dateien

scalable_pixel_exploration.pdf
scalable_pixel_exploration.pdfGröße: 723.67 KBDownloads: 242

Datum

2006

Autor:innen

Keim, Daniel A.
Schneidewind, Jörn
Sips, Mike

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

P. LÉVY, Pierre, ed. and others. Pixelization paradigm : first Visual Information Expert Workshop, VIEW 2006, Paris, France, April 24 - 25, 2006; revised selected papers. Berlin [u.a.]: Springer, 2006, pp. 12-24. Lecture Notes in Computer Science. 4370. ISBN 978-3-540-71026-4

Zusammenfassung

Pixel based visualization techniques have proven to be of high value in visual data exploration. Mapping data points to pixels not only allows the analysis and visualization of large data sets, but also provides an intuitive way to convert raw data into a graphical form. The graphical representation fosters new insights and encourages the formation and validation of new hypotheses to the end of better problem solving and gaining deeper domain knowledge. However, the ever increasing amount of information leads to new challenges for pixel-based techniques and concepts, especially if the number of data points significantly exceeds the available screen resolution. The paper focuses on ways to improve the scalability of pixel based techniques by proposing a multiresolution pixel-oriented visual exploration approach for large datasets. This approach combines clustering techniques with pixel-oriented mappings to preserve local clusters while providing space filling relevancedriven representations of the whole data set or portions of the data. The paper presents different application scenarios from the fields of financial analysis, geo-visualization, and network data analysis that clearly show the practical benefit of the multi-resolution approach for tackling the problem of scalability.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., Jörn SCHNEIDEWIND, Mike SIPS, 2006. Scalable Pixel based Visual Data Exploration. In: P. LÉVY, Pierre, ed. and others. Pixelization paradigm : first Visual Information Expert Workshop, VIEW 2006, Paris, France, April 24 - 25, 2006; revised selected papers. Berlin [u.a.]: Springer, 2006, pp. 12-24. Lecture Notes in Computer Science. 4370. ISBN 978-3-540-71026-4
BibTex
@inproceedings{Keim2006Scala-5617,
  year={2006},
  title={Scalable Pixel based Visual Data Exploration},
  number={4370},
  isbn={978-3-540-71026-4},
  publisher={Springer},
  address={Berlin [u.a.]},
  series={Lecture Notes in Computer Science},
  booktitle={Pixelization paradigm : first Visual Information Expert Workshop, VIEW 2006, Paris, France, April 24 - 25, 2006; revised selected papers},
  pages={12--24},
  editor={P. Lévy, Pierre},
  author={Keim, Daniel A. and Schneidewind, Jörn and Sips, Mike}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5617">
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5617/1/scalable_pixel_exploration.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Scalable Pixel based Visual Data Exploration</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:13Z</dcterms:available>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:13Z</dc:date>
    <dcterms:issued>2006</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:bibliographicCitation>First publ. in: Lecture Notes In Computer Science, No 4370 (2006), pp. 12-24</dcterms:bibliographicCitation>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <dc:creator>Sips, Mike</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:contributor>Sips, Mike</dc:contributor>
    <dcterms:abstract xml:lang="eng">Pixel based visualization techniques have proven to be of high value in visual data exploration. Mapping data points to pixels not only allows the analysis and visualization of large data sets, but also provides an intuitive way to convert raw data into a graphical form. The graphical representation fosters new insights and encourages the formation and validation of new hypotheses to the end of better problem solving and gaining deeper domain knowledge. However, the ever increasing amount of information leads to new challenges for pixel-based techniques and concepts, especially if the number of data points significantly exceeds the available screen resolution. The paper focuses on ways to improve the scalability of pixel based techniques by proposing a multiresolution pixel-oriented visual exploration approach for large datasets. This approach combines clustering techniques with pixel-oriented mappings to preserve local clusters while providing space filling relevancedriven representations of the whole data set or portions of the data. The paper presents different application scenarios from the fields of financial analysis, geo-visualization, and network data analysis that clearly show the practical benefit of the multi-resolution approach for tackling the problem of scalability.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5617"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5617/1/scalable_pixel_exploration.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen