Publikation: Ability of error correlations to improve the performance of variational quantum algorithms
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The quantum approximate optimization algorithm (QAOA) has the potential of providing a useful quantum advantage on noisy intermediate-scale quantum (NISQ) devices. The effects of uncorrelated noise on variational quantum algorithms such as QAOA have been studied intensively. Recent experimental results, however, show that the errors impacting NISQ devices are significantly correlated. We introduce a model for both spatially and temporally (non-Markovian) correlated errors based on classical environmental fluctuators. The model allows for the independent variation of the marginalized spacetime-local error probability and the correlation strength. Using this model, we study the effects of correlated stochastic noise on QAOA. We find evidence that the performance of QAOA improves as the correlation time or correlation length of the noise is increased at fixed local error probabilities. This shows that noise correlations in themselves need not be detrimental for NISQ algorithms such as QAOA.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KATTEMÖLLE, Joris, Guido BURKARD, 2023. Ability of error correlations to improve the performance of variational quantum algorithms. In: Physical Review A. American Physical Society (APS). 2023, 107(4), 042426. ISSN 2469-9926. eISSN 2469-9934. Available under: doi: 10.1103/physreva.107.042426BibTex
@article{Kattemolle2023Abili-66858, year={2023}, doi={10.1103/physreva.107.042426}, title={Ability of error correlations to improve the performance of variational quantum algorithms}, number={4}, volume={107}, issn={2469-9926}, journal={Physical Review A}, author={Kattemölle, Joris and Burkard, Guido}, note={Article Number: 042426} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66858"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66858"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-05-10T10:10:28Z</dc:date> <dcterms:title>Ability of error correlations to improve the performance of variational quantum algorithms</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Kattemölle, Joris</dc:creator> <dcterms:abstract>The quantum approximate optimization algorithm (QAOA) has the potential of providing a useful quantum advantage on noisy intermediate-scale quantum (NISQ) devices. The effects of uncorrelated noise on variational quantum algorithms such as QAOA have been studied intensively. Recent experimental results, however, show that the errors impacting NISQ devices are significantly correlated. We introduce a model for both spatially and temporally (non-Markovian) correlated errors based on classical environmental fluctuators. The model allows for the independent variation of the marginalized spacetime-local error probability and the correlation strength. Using this model, we study the effects of correlated stochastic noise on QAOA. We find evidence that the performance of QAOA improves as the correlation time or correlation length of the noise is increased at fixed local error probabilities. This shows that noise correlations in themselves need not be detrimental for NISQ algorithms such as QAOA.</dcterms:abstract> <dc:contributor>Burkard, Guido</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Burkard, Guido</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Kattemölle, Joris</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2023</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-05-10T10:10:28Z</dcterms:available> </rdf:Description> </rdf:RDF>