Magnostics : Image-Based Search of Interesting Matrix Views for Guided Network Exploration

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Bach, Benjamin
von Rüden, Laura
Fekete, Jean-Daniel
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Visualization and Computer Graphics. 2017, 23(1), pp. 31-40. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2016.2598467
Zusammenfassung

In this work we address the problem of retrieving potentially interesting matrix views to support the exploration of networks. We introduce Matrix Diagnostics (or Magnostics), following in spirit related approaches for rating and ranking other visualization techniques, such as Scagnostics for scatter plots. Our approach ranks matrix views according to the appearance of specific visual patterns, such as blocks and lines, indicating the existence of topological motifs in the data, such as clusters, bi-graphs, or central nodes. Magnostics can be used to analyze, query, or search for visually similar matrices in large collections, or to assess the quality of matrix reordering algorithms. While many feature descriptors for image analyzes exist, there is no evidence how they perform for detecting patterns in matrices. In order to make an informed choice of feature descriptors for matrix diagnostics, we evaluate 30 feature descriptors-27 existing ones and three new descriptors that we designed specifically for MAGNOSTICS-with respect to four criteria: pattern response, pattern variability, pattern sensibility, and pattern discrimination. We conclude with an informed set of six descriptors as most appropriate for Magnostics and demonstrate their application in two scenarios; exploring a large collection of matrices and analyzing temporal networks.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BEHRISCH, Michael, Benjamin BACH, Michael BLUMENSCHEIN, Michael DELZ, Laura VON RÜDEN, Jean-Daniel FEKETE, Tobias SCHRECK, 2017. Magnostics : Image-Based Search of Interesting Matrix Views for Guided Network Exploration. In: IEEE Transactions on Visualization and Computer Graphics. 2017, 23(1), pp. 31-40. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2016.2598467
BibTex
@article{Behrisch2017-01Magno-38799,
  year={2017},
  doi={10.1109/TVCG.2016.2598467},
  title={Magnostics : Image-Based Search of Interesting Matrix Views for Guided Network Exploration},
  number={1},
  volume={23},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={31--40},
  author={Behrisch, Michael and Bach, Benjamin and Blumenschein, Michael and Delz, Michael and von Rüden, Laura and Fekete, Jean-Daniel and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38799">
    <dc:contributor>Bach, Benjamin</dc:contributor>
    <dcterms:issued>2017-01</dcterms:issued>
    <dc:creator>Bach, Benjamin</dc:creator>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dcterms:abstract xml:lang="eng">In this work we address the problem of retrieving potentially interesting matrix views to support the exploration of networks. We introduce Matrix Diagnostics (or Magnostics), following in spirit related approaches for rating and ranking other visualization techniques, such as Scagnostics for scatter plots. Our approach ranks matrix views according to the appearance of specific visual patterns, such as blocks and lines, indicating the existence of topological motifs in the data, such as clusters, bi-graphs, or central nodes. Magnostics can be used to analyze, query, or search for visually similar matrices in large collections, or to assess the quality of matrix reordering algorithms. While many feature descriptors for image analyzes exist, there is no evidence how they perform for detecting patterns in matrices. In order to make an informed choice of feature descriptors for matrix diagnostics, we evaluate 30 feature descriptors-27 existing ones and three new descriptors that we designed specifically for MAGNOSTICS-with respect to four criteria: pattern response, pattern variability, pattern sensibility, and pattern discrimination. We conclude with an informed set of six descriptors as most appropriate for Magnostics and demonstrate their application in two scenarios; exploring a large collection of matrices and analyzing temporal networks.</dcterms:abstract>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:creator>Delz, Michael</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Fekete, Jean-Daniel</dc:creator>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dcterms:title>Magnostics : Image-Based Search of Interesting Matrix Views for Guided Network Exploration</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-09T08:57:49Z</dc:date>
    <dc:contributor>Delz, Michael</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-09T08:57:49Z</dcterms:available>
    <dc:creator>Blumenschein, Michael</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>von Rüden, Laura</dc:creator>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>von Rüden, Laura</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38799"/>
    <dc:contributor>Fekete, Jean-Daniel</dc:contributor>
    <dc:contributor>Blumenschein, Michael</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet