Publikation:

Nonanimal Models for Acute Toxicity Evaluations : Applying Data-Driven Profiling and Read-Across

Lade...
Vorschaubild

Dateien

Russo_2-gq207jhhnjkw2.pdf
Russo_2-gq207jhhnjkw2.pdfGröße: 3.03 MBDownloads: 278

Datum

2019

Autor:innen

Russo, Daniel P.
Strickland, Judy
Karmaus, Agnes L.
Wang, Wenyi
Shende, Sunil
Aleksunes, Lauren M.
Zhu, Hao

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Environmental Health Perspectives. 2019, 127(4), 047001. ISSN 0091-6765. eISSN 1552-9924. Available under: doi: 10.1289/EHP3614

Zusammenfassung

Background: Low-cost, high-throughput in vitro bioassays have potential as alternatives to animal models for toxicity testing. However, incorporating in vitro bioassays into chemical toxicity evaluations such as read-across requires significant data curation and analysis based on knowledge of relevant toxicity mechanisms, lowering the enthusiasm of using the massive amount of unstructured public data.

Objective: We aimed to develop a computational method to automatically extract useful bioassay data from a public repository (i.e., PubChem) and assess its ability to predict animal toxicity using a novel bioprofile-based read-across approach.

Methods: A training database containing 7,385 compounds with diverse rat acute oral toxicity data was searched against PubChem to establish in vitro bioprofiles. Using a novel subspace clustering algorithm, bioassay groups that may inform on relevant toxicity mechanisms underlying acute oral toxicity were identified. These bioassays groups were used to predict animal acute oral toxicity using read-across through a cross-validation process. Finally, an external test set of over 600 new compounds was used to validate the resulting model predictivity.

Results: Several bioassay clusters showed high predictivity for acute oral toxicity (positive prediction rates range from 62–100%) through cross-validation. After incorporating individual clusters into an ensemble model, chemical toxicants in the external test set were evaluated for putative acute toxicity (positive prediction rate equal to 76%). Additionally, chemical fragment–in vitro–in vivo relationships were identified to illustrate new animal toxicity mechanisms.

Conclusions: The in vitro bioassay data-driven profiling strategy developed in this study meets the urgent needs of computational toxicology in the current big data era and can be extended to develop predictive models for other complex toxicity end points.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RUSSO, Daniel P., Judy STRICKLAND, Agnes L. KARMAUS, Wenyi WANG, Sunil SHENDE, Thomas HARTUNG, Lauren M. ALEKSUNES, Hao ZHU, 2019. Nonanimal Models for Acute Toxicity Evaluations : Applying Data-Driven Profiling and Read-Across. In: Environmental Health Perspectives. 2019, 127(4), 047001. ISSN 0091-6765. eISSN 1552-9924. Available under: doi: 10.1289/EHP3614
BibTex
@article{Russo2019-04Nonan-45818,
  year={2019},
  doi={10.1289/EHP3614},
  title={Nonanimal Models for Acute Toxicity Evaluations : Applying Data-Driven Profiling and Read-Across},
  number={4},
  volume={127},
  issn={0091-6765},
  journal={Environmental Health Perspectives},
  author={Russo, Daniel P. and Strickland, Judy and Karmaus, Agnes L. and Wang, Wenyi and Shende, Sunil and Hartung, Thomas and Aleksunes, Lauren M. and Zhu, Hao},
  note={Article Number: 047001}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45818">
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Shende, Sunil</dc:contributor>
    <dc:creator>Shende, Sunil</dc:creator>
    <dcterms:issued>2019-04</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45818/3/Russo_2-gq207jhhnjkw2.pdf"/>
    <dc:creator>Zhu, Hao</dc:creator>
    <dc:contributor>Wang, Wenyi</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Strickland, Judy</dc:contributor>
    <dc:creator>Strickland, Judy</dc:creator>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-05-15T06:57:10Z</dc:date>
    <dc:contributor>Russo, Daniel P.</dc:contributor>
    <dc:creator>Aleksunes, Lauren M.</dc:creator>
    <dc:creator>Wang, Wenyi</dc:creator>
    <dc:creator>Karmaus, Agnes L.</dc:creator>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dc:contributor>Zhu, Hao</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45818"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45818/3/Russo_2-gq207jhhnjkw2.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Aleksunes, Lauren M.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Background: Low-cost, high-throughput in vitro bioassays have potential as alternatives to animal models for toxicity testing. However, incorporating in vitro bioassays into chemical toxicity evaluations such as read-across requires significant data curation and analysis based on knowledge of relevant toxicity mechanisms, lowering the enthusiasm of using the massive amount of unstructured public data.&lt;br /&gt;&lt;br /&gt;Objective: We aimed to develop a computational method to automatically extract useful bioassay data from a public repository (i.e., PubChem) and assess its ability to predict animal toxicity using a novel bioprofile-based read-across approach.&lt;br /&gt;&lt;br /&gt;Methods: A training database containing 7,385 compounds with diverse rat acute oral toxicity data was searched against PubChem to establish in vitro bioprofiles. Using a novel subspace clustering algorithm, bioassay groups that may inform on relevant toxicity mechanisms underlying acute oral toxicity were identified. These bioassays groups were used to predict animal acute oral toxicity using read-across through a cross-validation process. Finally, an external test set of over 600 new compounds was used to validate the resulting model predictivity.&lt;br /&gt;&lt;br /&gt;Results: Several bioassay clusters showed high predictivity for acute oral toxicity (positive prediction rates range from 62–100%) through cross-validation. After incorporating individual clusters into an ensemble model, chemical toxicants in the external test set were evaluated for putative acute toxicity (positive prediction rate equal to 76%). Additionally, chemical fragment–in vitro–in vivo relationships were identified to illustrate new animal toxicity mechanisms.&lt;br /&gt;&lt;br /&gt;Conclusions: The in vitro bioassay data-driven profiling strategy developed in this study meets the urgent needs of computational toxicology in the current big data era and can be extended to develop predictive models for other complex toxicity end points.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-05-15T06:57:10Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Russo, Daniel P.</dc:creator>
    <dc:contributor>Karmaus, Agnes L.</dc:contributor>
    <dcterms:title>Nonanimal Models for Acute Toxicity Evaluations : Applying Data-Driven Profiling and Read-Across</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen