Publikation:

Sum of squares length of real forms

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Mathematische Zeitschrift. 2017, 286(1-2), pp. 559-570. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-016-1773-z

Zusammenfassung

For n,d≥1 let p(n, 2d) denote the smallest number p such that every sum of squares of degree d forms in R[x1,…,xn] is a sum of p squares. We establish lower bounds for p(n, 2d) that are considerably stronger than the bounds known so far. Combined with known upper bounds they give p(3,2d)∈{d+1,d+2} in the ternary case. Assuming a conjecture of Iarrobino–Kanev on dimensions of tangent spaces to catalecticant varieties, we show that p(n,2d)∼const⋅d(n−1)/2 for d→∞ and all n≥3. For ternary sextics and quaternary quartics we determine the exact value of the invariant, showing p(3,6)=4 and p(4,4)=5.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHEIDERER, Claus, 2017. Sum of squares length of real forms. In: Mathematische Zeitschrift. 2017, 286(1-2), pp. 559-570. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-016-1773-z
BibTex
@article{Scheiderer2017squar-39241,
  year={2017},
  doi={10.1007/s00209-016-1773-z},
  title={Sum of squares length of real forms},
  number={1-2},
  volume={286},
  issn={0025-5874},
  journal={Mathematische Zeitschrift},
  pages={559--570},
  author={Scheiderer, Claus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39241">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-06-13T09:14:58Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Sum of squares length of real forms</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2017</dcterms:issued>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">For n,d≥1 let p(n, 2d) denote the smallest number p such that every sum of squares of degree d forms in R[x1,…,xn] is a sum of p squares. We establish lower bounds for p(n, 2d) that are considerably stronger than the bounds known so far. Combined with known upper bounds they give p(3,2d)∈{d+1,d+2} in the ternary case. Assuming a conjecture of Iarrobino–Kanev on dimensions of tangent spaces to catalecticant varieties, we show that p(n,2d)∼const⋅d(n−1)/2 for d→∞ and all n≥3. For ternary sextics and quaternary quartics we determine the exact value of the invariant, showing p(3,6)=4 and p(4,4)=5.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-06-13T09:14:58Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39241"/>
    <dc:language>eng</dc:language>
    <dc:creator>Scheiderer, Claus</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen