Publikation: Sum of squares length of real forms
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematische Zeitschrift. 2017, 286(1-2), pp. 559-570. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-016-1773-z
Zusammenfassung
For n,d≥1 let p(n, 2d) denote the smallest number p such that every sum of squares of degree d forms in R[x1,…,xn] is a sum of p squares. We establish lower bounds for p(n, 2d) that are considerably stronger than the bounds known so far. Combined with known upper bounds they give p(3,2d)∈{d+1,d+2} in the ternary case. Assuming a conjecture of Iarrobino–Kanev on dimensions of tangent spaces to catalecticant varieties, we show that p(n,2d)∼const⋅d(n−1)/2 for d→∞ and all n≥3. For ternary sextics and quaternary quartics we determine the exact value of the invariant, showing p(3,6)=4 and p(4,4)=5.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SCHEIDERER, Claus, 2017. Sum of squares length of real forms. In: Mathematische Zeitschrift. 2017, 286(1-2), pp. 559-570. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-016-1773-zBibTex
@article{Scheiderer2017squar-39241, year={2017}, doi={10.1007/s00209-016-1773-z}, title={Sum of squares length of real forms}, number={1-2}, volume={286}, issn={0025-5874}, journal={Mathematische Zeitschrift}, pages={559--570}, author={Scheiderer, Claus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39241"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-06-13T09:14:58Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Sum of squares length of real forms</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2017</dcterms:issued> <dc:contributor>Scheiderer, Claus</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">For n,d≥1 let p(n, 2d) denote the smallest number p such that every sum of squares of degree d forms in R[x1,…,xn] is a sum of p squares. We establish lower bounds for p(n, 2d) that are considerably stronger than the bounds known so far. Combined with known upper bounds they give p(3,2d)∈{d+1,d+2} in the ternary case. Assuming a conjecture of Iarrobino–Kanev on dimensions of tangent spaces to catalecticant varieties, we show that p(n,2d)∼const⋅d(n−1)/2 for d→∞ and all n≥3. For ternary sextics and quaternary quartics we determine the exact value of the invariant, showing p(3,6)=4 and p(4,4)=5.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-06-13T09:14:58Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39241"/> <dc:language>eng</dc:language> <dc:creator>Scheiderer, Claus</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja