Publikation:

Valuation theory of exponential Hardy fields II : Principal parts of germs in the Hardy field of o-minimal exponential expansions of the reals

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Kuhlmann, Franz-Viktor
Kuhlmann, Salma

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We present a general structure theorem for the Hardy field of an o-minimal expansion of the reals by restricted analytic functions and an unrestricted exponential. We proceed to analyze its residue fields with respect to arbitrary convex valuations, and deduce a power series expansion of exponential germs. We apply these results to cast "Hardy's conjecture" (see \cite[p.111]{[KS]}) in a more general framework. This paper is a follow up to \cite{[K-K2]} and is partially based on unpublished results of \cite{[K-K]}. A previous version \cite{[K-K1]} (which was dedicated to Murray A. Marshall on his 60th birthday) remained unpublished. In \cite{[W]} our structure theorem for the residue fields was rediscovered and applied to the diophantine context. Due to this revived interest, we decided to rework the preprint \cite{[K-K1]} and submit it to the Proceedings Volume.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690
BibTex
RDF

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Wird erscheinen in: AMS Contemporary Mathematics
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2018-02-06 12:19:26
1*
2017-01-24 13:31:08
* Ausgewählte Version